

Peer-to-Peer Video Streaming

Peer-to-Peer Video Streaming

Eric Setton
Streaming Media Systems Group
Hewlett-Packard Laboratories
Palo Alto, CA

Bernd Girod
Information Systems Laboratory
Department of Electrical Engineering
Stanford University
Stanford, CA

Eric Setton
Streaming Media Systems Group
Hewelett-Packard Laboratories
Palo Alto, CA 94304
eric.setton@hp.com

Bernd Girod
Information Systems Laboratory
Department of Electrical Engineering
Stanford, CA 94305
bgirod@stanford.edu

ISBN-13: 978-0-387-74114-7 e-ISBN-13: 978-0-387-74115-4

Library of Congress Control Number: 2007932753

c© 2007 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper.

9 8 7 6 5 4 3 2 1

springer.com

To my parents
Eric Setton

Preface

Live video broadcasting over the Internet requires an infrastructure capable
of supporting a large number of simultaneous unicast connections. Since the
costs of providing this service grow with the number of viewers, television
networks have been reluctant to offer it to their customers on a large scale.
Peer-to-peer architectures are an alternative where viewers contribute their
resources to the network to act as relays, hence overcoming the need for a
dedicated content delivery infrastructure.

Peer-to-peer video streaming systems offer the same advantages as peer-
to-peer file transfer networks but face additional challenges since data transfer
needs to occur continuously to avoid playout interruptions. This is particularly
difficult since the peers are connected to the Internet by links which may have
different capacity and reliability. Moreover, data delivery paths may simply
disappear without prior notice, e.g., when a peer leaves the broadcast. This
challenging environment is a perfect field of application for recent advances
in compression, streaming, and networking and a catalyst for new progress.
Remarkably, functioning solutions have emerged and the research community
now expects that in the future peer-to-peer video streaming system will be
used for large-scale live television distribution over the Internet.

One of the goals of this book is to provide an overview of today’s state-
of-the-art peer-to-peer video streaming technology and to show how it can
be improved in terms of video quality, robustness, and latency. We present
adaptive video coding and streaming techniques which enhance the perfor-
mance of conventional client-server systems and extend them to peer-to-peer
multicast. We focus on throughput-limited environments where congestion of-
ten hampers interactivity and fast response times. We analyze the benefits of
scheduling packet transmissions and retransmissions in a way which adapts
to the particular properties of video streams and to the changing topology of
peer-to-peer networks. The performance of the solutions we propose is assessed
by analyzing the results of experiments carried out over simulated networks
with large numbers of peers.

VIII Preface

The contents of this book is the result of research carried out over the
course of the last few years at Stanford University. The text itself is based
on the 2006 Ph.D. dissertation of the first author. Compared to this original
work, the presentation has been revised substantially and additional material
of interest has been added.

The authors would like to thank the members of the Image, Video and Mul-
timedia Systems group at Stanford and the members of the Streaming Media
Systems group at HP Labs for many insightful discussions. We are grateful to
John Apostolopoulos for his continuous support and his many helpful com-
ments and to Jeonghun Noh for his work on the peer-to-peer control protocol.
Amy Brais and Jennifer Evans, at Springer, were very supportive and provided
us with a lot of assistance.

Palo Alto, CA, USA Eric Setton
Bernd Girod

Contents

1 Introduction . 1

2 Background . 5
2.1 Video Compression . 5

2.1.1 H.264 Video Coding . 5
2.1.2 Distortion Models . 7

2.2 Video Streaming . 8
2.2.1 Error Resilience . 8
2.2.2 Congestion Control . 11
2.2.3 Path Diversity . 12

2.3 Multicast Architectures . 13
2.3.1 IP Multicast . 13
2.3.2 Content Delivery Networks . 13

2.4 Peer-to-Peer Systems . 14
2.4.1 Peer-to-Peer File Transfer, the Example of BitTorrent . . 14
2.4.2 Peer-to-Peer Streaming . 17

3 Streaming over Throughput-Limited Paths 19
3.1 Video Encoding for Throughput-Limited Paths 19

3.1.1 End-to-End Rate-Distortion Performance Model 20
3.1.2 Experimental Results . 28

3.2 Congestion-Distortion Optimized Scheduling 33
3.2.1 Channel Model . 34
3.2.2 Evaluating a Schedule . 35
3.2.3 Randomized Schedule Search . 41
3.2.4 CoDiO Light. 45
3.2.5 Experimental Results . 47

3.3 Chapter Summary . 61

X Contents

4 Peer-to-Peer Control Protocol . 63
4.1 Protocol Description . 64

4.1.1 Different Peer States . 64
4.1.2 Different Tree Connection States . 69
4.1.3 Multicast Source . 74
4.1.4 Protocol Settings . 75

4.2 Experimental Protocol Evaluation . 77
4.2.1 Experimental Setup . 77
4.2.2 Control Protocol Traffic Distribution 79
4.2.3 Join and Rejoin Latency . 79
4.2.4 Scalability . 80
4.2.5 Limiting Throughput . 82

4.3 Chapter Summary . 86

5 Video Streaming over a Peer-to-Peer Network 87
5.1 Video Streaming Protocol . 88

5.1.1 Video Packet Transmission . 88
5.1.2 Retransmissions . 89

5.2 Peer-to-Peer CoDiO Scheduling . 89
5.2.1 Sender-Driven Prioritization . 91
5.2.2 Distortion-Optimized Retransmission Scheduling 93
5.2.3 Scheduler Evaluation . 95

5.3 Experimental Results . 102
5.3.1 Video Sessions . 102
5.3.2 Diversity . 102
5.3.3 CoDiO P2P . 103

5.4 Chapter Summary . 114

6 Conclusions and Future Work . 115
6.1 Conclusions . 115
6.2 Future Work . 116

A Video Experiments . 117
A.1 Video Streaming . 117

A.1.1 Encoding Structures . 117
A.1.2 Latency-Constrained Video Streaming 118
A.1.3 Error-Resilient Decoding . 118
A.1.4 Quality Metric . 119

A.2 Video Sequences . 121
A.2.1 Container . 121
A.2.2 Foreman . 123
A.2.3 Mobile . 125
A.2.4 Mother & Daughter . 127
A.2.5 News . 129
A.2.6 Salesman . 131

Contents XI

References . 133

Index . 147

1

Introduction

Since the appearance of Napster in early 1999, peer-to-peer (P2P) networks
have experienced tremendous growth. In 2003, P2P became the most popular
Web application, and, at the end of 2004, P2P protocols represented over
60% of the total Internet traffic, dwarfing Web browsing, the second most
popular application [1]. This rapid success was fueled by file transfer networks
which allow users to swap media files, despite the large latency often necessary
to complete a download. It is expected to continue at a fast pace, as new
compelling P2P applications are developed. One of these applications, P2P
multicast, is explored in this book.

In P2P multicast, a media stream is sent to a large audience by taking
advantage of the uplink capability of the viewers to forward data. Similar
to file transfer networks, data propagation is accomplished, via a distributed
protocol, which lets peers self-organize into distribution trees or meshes. The
striking difference is that this should happen in real-time, to provide all con-
nected users with a TV-like viewing experience. Compared to content delivery
networks, this approach is appealing as it does not require any dedicated in-
frastructure and is self-scaling as the resources of the network increase with
the number of users.

To become widely adopted, P2P streaming systems should achieve high
and constant video quality, as well as low startup latency. Three factors make
this a difficult task. First, the access bandwidth of the peers is often insuf-
ficient to support high quality video. Second, the peers may choose to dis-
connect at any time breaking data distribution paths. This creates a highly
unreliable and dynamic network fabric. Third, unlike in client-server systems,
packets often need to be relayed along long multi-hop paths, each hop in-
troducing additional delay, especially when links are congested. This unique
set of challenges explain why early implementations, although they consti-
tute remarkable progress and demonstrate the feasibility of large scale P2P
streaming, fall short of the goals.

In our own research, which is presented in this book, we have investigated
video streaming systems in order to enhance the perceived image quality,

2 1 Introduction

increase their robustness to errors, and reduce latency. As the techniques that
we are considering have merit for both client-server and P2P networks, our
approach is to analyze the performance of unicast systems first, before ex-
tending and adapting the algorithms to P2P multicast. We investigate, in
particular, throughput-limited environments where video streams may cause
self-congestion when their rate is too high or when their transmission is in-
adequately controlled. In this context, we show the importance of adaptive
packet scheduling which may help extend the range of sustainable rates, re-
duce startup latency, and maintain high error resilience.

The rest of this book is organized as follows. In the next chapter, we des-
cribe recent advances in the field of video compression, video streaming, mul-
ticast architectures and P2P systems, related to our work. In Chapter 3, we
consider client-server systems. We focus on the impact of self-inflicted conges-
tion on low-latency video streaming. We present an end-to-end rate-distortion
model which captures the impact of both compression and late loss due to self-
inflicted congestion. The model is helpful for deriving an encoding rate which
maximizes video quality. In the second part of the chapter, we introduce the
concept of congestion-distortion optimized (CoDiO) packet scheduling. Dif-
ferent from rate-distortion optimization, this type of algorithm determines
which packets to send, and when, to maximize decoded video quality while
limiting network congestion. We describe the operations of this scheduler, and
of a low-complexity scheduler derived from it, and analyze their performance
over a simulated network. The experimental results presented in this chapter
are the first in-depth comparison of congestion and rate-distortion optimized
schedulers.

In Chapter 4 and in Chapter 5, we consider the scenario of live P2P mul-
ticast where the video stream is sent to a large population of peers. Before
showing how adaptive streaming algorithms can be adapted to this context,
we describe a distributed control protocol, designed for fast startup, which is
run by the peers to construct and maintain multiple multicast trees rooted
at the video source. This allows to transmit a video stream synchronously to
a set of peers by relying on their forwarding capacity. The operations of this
protocol are described in detail and an analysis of its performance over differ-
ent networks is presented. In Chapter 5, we explain how to extend congestion-
distortion optimized packet scheduling to P2P live streaming to further reduce
startup latency and to support higher rates. Similar to the CoDiO scheduler,
the adaptive scheduler we present transmits in priority packets which con-
tribute most to the decoded video quality. In addition, it favors peers which
serve, subsequently, larger populations since they have the largest impact on
the overall video quality. This one-to-many packet scheduler is combined with
a retransmission scheduler which operates at the receivers to request, in pri-
ority, missing packets which will lead to the largest distortion reduction. We
investigate the performance of this streaming technique over simulated net-
works of hundreds of peers. Conclusions and future research directions are

1 Introduction 3

presented in Chapter 6. The appendix contains additional technical details
about the different video streaming experiments reported previously in the
book.

2

Background

The purpose of the work presented in this book is to analyze and improve the
performance of video streaming systems operating in bandwidth-constrained
networks. In particular, we consider low-latency applications where a source is
serving a single receiver or where video is multicast to a population of peers.
Our work builds upon recent advances which have focused on providing better
compression efficiency, on increasing the robustness of video streaming sys-
tems, and on building efficient multicast architectures or peer-to-peer systems.
In the following, we present an overview of the state-of-the-art in these areas.

2.1 Video Compression

2.1.1 H.264 Video Coding

The results we present in the following chapters were obtained for video se-
quences compressed using the latest video coding standard H.264, also called
MPEG-4 Advanced Video Coding or H.264/AVC, which was finalized in
March 2003 [2]. Like its predecessors, H.261, MPEG-1, H.262 (MPEG-2),
H.263 and MPEG-4 [3, 4, 5, 6, 7], H.264 is a hybrid codec which combines
blockwise transform coding and motion-compensated predictive coding to re-
duce the redundancy of a video signal. Overviews of modern video coding and
in particular of H.264 can be found in [8, 9, 10, 11]. Two technically similar
video coding standards, Microsoft’s SMPTE VC-1 and the Chinese Advanced
Video coding Standard AVS, are presented in [12, 13] and in [14]. Compared to
H.263, H.264 achieves bit rate reductions of up to 50% at a comparable qual-
ity. This gain is the result of a combination of new features introduced in the
standard: these include better motion-compensated prediction with multiple
reference frames and varying block sizes down to 4x4 pixels [15], spatial pre-
diction of intra-coded blocks, and improved entropy coding [16]. A reference
software implementation of H.264 has been made freely available [17].

6 2 Background

The standard specifies three major profiles: the Baseline profile which is
mindful of the computational complexity, the Main profile, designed to take
full advantage of the coding efficiency of H.264, and the Extended profile,
which includes a number of enhancements for streaming applications [18].
Recent additions to the standard include an extension for higher fidelity (e.g.,
10 bits/sample) video signals called FRExt (Fidelity Range Extension) [19]
and an extension for Scalable Video Coding (SVC) [20, 21].

The basic components of a hybrid video encoder are shown in Fig. 2.1.
The input video signal is predicted from previously transmitted information
available both at the encoder and the decoder, and the prediction error is
compressed, typically with a transform coder operating on a block-by-block
basis. The prediction can be based on information in other frames (“motion-
compensated predictor”) or in the same frame (“intra predictor”). As in still
picture coding, intra-prediction exploits correlation among adjacent pixels in
the image. More specific to video is motion-compensated prediction that uses
one or several previously encoded frames as references to predict the cur-
rent frame. Depending on the type of prediction allowed, we distinguish three
types of coded frames: Intra (I) frames do not use temporal prediction but
only intra-prediction; Predicted (P) frames use only one previously encoded
frame as a reference; Bi-directionally predicted (B) frames combine prediction
from two reference frames1. In general, I frames produce a much larger bit rate
than P frames. The best coding efficiency can be achieved by using B frames.
The residual signal after prediction is transformed in the frequency domain
and quantized. Finally, entropy coding techniques, like context-based variable
length coding or arithmetic coding, are applied to compress the syntax el-
ements representing the video signal, which include motion vectors, coding
modes, and quantized transform coefficients.

Higher compression efficiency makes the signal more susceptible to trans-
mission errors. Even the corruption of a single bit in the compressed stream
may preclude the decoding of a video syntax element and, since context-based
entropy coding is used, such an error will affect all the following syntax el-
ements until a re-synchronization marker is encountered. In addition, error
propagation may occur within a frame, when a corrupted pixel value is used
for prediction of adjacent pixels. Finally, regions of an image that cannot be
correctly decoded create artifacts that are propagated over several consecu-
tive frames, due to temporal prediction. Error propagation will continue until
the next I frame is successfully decoded, since this type of picture does not
depend on previously encoded pictures.

1 Please note that these restrictions are required in MPEG-1 and MPEG-2. The
most recent H.264/AVC standard is much more general and allows but does not
mandate I, P, and B frames as described here.

2.1 Video Compression 7

Fig. 2.1. Diagram of a motion-compensated hybrid video coder according to H.261,
MPEG-1, MPEG-2, H.263, MPEG-4, or H.264/AVC standards. The intra-inter
switch controls whether spatial or temporal prediction is used for compression. De-
pendency between frames is introduced via the motion-compensated inter-frame
prediction when P frames and B frames are encoded.

2.1.2 Distortion Models

Performance of Motion-Compensated Video Coding

To study the performance of hybrid video coding, a theoretical framework
is developed in [22]. An analysis of the rate-distortion efficiency of motion-
compensated coding is presented in this paper, where a closed-form expression
is obtained by assuming the different image signals and motion-compensated
predictors are stationary and jointly Gaussian zero-mean signals. Hence, the
resulting rate-distortion function can be thought of as an upper bound to
the rate-distortion function for a non-Gaussian image signal with the same
power spectral density. Although this is a simplification, the model has been
widely used in the literature to evaluate the performance of several image
or video encoders. The performance of I frames and P frames is derived for
integer-pixel and fractional-pixel motion accuracy in [22] and studied further
in [23]. The rate-distortion efficiency of B frames can be obtained from the
model extension to multi-hypothesis predictive coding proposed in [24]. Other
extensions are presented in [25, 26, 27] where the effect of the size of the set of
predictors and of the correlation between the different predictors is analyzed.
In [28] and [29], the authors show that the model can also be helpful to
quantify the performance of scalable video codecs.

Empirical Distortion Models

The model described in [22] is general and well-suited to gain insight on the
influence of different elements composing a video coding system. However

8 2 Background

it assumes ideal compression performance and, as such, does not reflect the
performance of specific implementations of video codecs. This has motivated
research on more practical distortion models which are obtained by analyzing
the empirical performance of various codecs, as in [30] for example.

In [31], a model is proposed to characterize the rate-distortion perfor-
mance of H.263 video streaming with P frames. This includes an analysis of
the encoder distortion and of the impact of transmission errors on the decoded
signal. Despite its simplicity, this model accurately predicts end-to-end per-
formance. In this book, we show that the use of this model can be applied to
a video stream encoded with H.264, and can be extended to a video streaming
system operating in a throughput-limited environment. More complex models
have also been proposed to account more accurately for the impact of packet
loss. Many focus on the error propagation which occurs, due to predictive-
video coding, when part of an image has to be concealed by the decoder
[32, 33, 34]. Other models capturing the influence of specific loss patterns are
studied in [35] and [36]. They have been employed to enhance the performance
of video streaming systems, which are reviewed in the following section.

2.2 Video Streaming

Multimedia applications have experienced explosive growth in the last decade
and have become a pervasive application over the Internet. Despite the growth
in availability of broadband technology, and progress in video compression, the
quality of video streaming systems is still not on par with SDTV and even
further from HDTV. This is due to the best-effort nature of the network which
does not offer any guaranteed quality of service (QoS) and where bandwidth,
delay and losses may vary unexpectedly. The advent of wireless last hops, and
the emergence of multi-hop ad hoc networks bring as additional challenges
interference, shadowing and mobility. It is a daunting task to achieve high
and constant quality video, and low startup delays and end-to-end latencies,
in such environments. Recent overviews and special issues reviewing progress
in video streaming can be found in [37, 38, 39, 40] and in [41, 42, 43] for the
case of wireless networks. In the following we focus on advances related to
error resilience, congestion control and multi-path delivery.

2.2.1 Error Resilience

Error control techniques help mitigate the impact of transmission errors or
of packet loss on the quality of the decoded video [44, 45]. They are essen-
tial to applications for which it is difficult to achieve timely and error-free
delivery of the stream. Examples include interactive applications that require
low latencies, e.g. two-way video communications, Internet-based television,
etc., or situations where the network fabric is unreliable, as in the case of
peer-to-peer applications or of wireless links. For such applications, it is well

2.2 Video Streaming 9

known that the separation principle of source and channel coding put forth
in Shannon’s information theoretic work does not hold, as it would require
infinite length codewords and large delays. Hence, joint source and channel
coding techniques have been proposed, but have not yet lead to a unified so-
lution to this problem, as explained in [46]. These considerations, however,
have strongly influenced the video coding community in the design of a highly
flexible network-friendly syntax in H.264 [47]. It has also motivated the net-
working community to consider different prioritization classes for traffic with
varying QoS requirement [48, 49].

Robust Video Coding

One approach to error control is to increase the robustness of the bitstream
produced by video encoders by increasing the redundancy at the cost of lower
coding efficiency. This can be done, for example, by varying the amount of
intra-coded pictures, slices or macroblocks in the compressed video, which can
be decoded regardless of the state of the decoding buffer as they do not rely
on information carried by other parts of the bitstream [50, 51, 31, 52]. More
generally, it is possible to incorporate, at the encoder, the effect of loss in
the mode decision process to minimize the expected distortion. This principle
governs the reference picture selection (RPS) algorithm [46], adopted as an
extension of H.263, which adapts the encoding to feedback information sent
by the decoder. These algorithms are investigated and extended in [53, 54, 55,
56, 57]. Similar ideas can also be applied to pre-stored bitstreams and do not
require the use of a live encoder [58, 59, 60].

Forward Error Correction

The performance of a video streaming system can also be improved by pro-
tecting the encoded bitstream with channel coding. One of the most popular
ways of achieving this is to apply forward error correction (FEC) across the
different packets of a compressed video stream, notably with Reed Solomon
codes. In this way a receiver can recover the encoded stream from any large
enough subset of packets. For video streaming, the priority encoding trans-
mission (PET) scheme proposed in [61] is a popular way to provide unequal
error protection (UEP) of different layers of a scalable video representation
[62, 63, 64]. Optimizing the bit-rate and the amount of protection of the dif-
ferent layers is studied in [65, 66, 67, 68]. FEC can also be combined with data
partitioning which separates the stream into different segments and prioritizes
important information such as headers and motion vectors [69] or to protect
a region of interest using in particular the new error resiliency tools provided
by H.264 such as flexible macroblock ordering (FMO) [70, 71].

10 2 Background

Rate-Distortion Optimized Scheduling

The FEC-based approach outlined above is most efficient when the loss statis-
tics are known at the sender. In many cases however, losses occur in bursts
or their statistics are time-varying. Hence, in practical streaming systems, the
most common error control technique is Automatic Repeat reQuest (ARQ)
where lost packets are recovered through retransmission [72, 73, 74]. ARQ
systems use combinations of time-outs and positive and negative acknowl-
edgments to determine which packets should be retransmitted. Unlike FEC
schemes, ARQ automatically adapts to varying channel loss rates and, hence,
tends to be more efficient for the Internet. Advanced schemes can allow for
prioritized retransmission of more important packets. This leads to the general
question of finding the best schedule of transmissions and retransmissions of a
packetized media stream. One of the earliest publications that addresses in a
rigorous manner the issue of scheduling transmissions and retransmissions of
layered media representations is the 1998 technical report on Soft ARQ [75]
which introduces a Markov chain analysis to find the optimal transmission
policy. Unfortunately, a search space growing exponentially with the number
of packets considered for transmission limits the practicality of the solution.
In a related paper, Miao and Ortega suggest a low-complexity heuristic for
the problem [76].

A particularly intriguing framework for computing rate-distortion opti-
mized packet scheduling policies has been developed, at around the same time,
by Chou and Miao [77, 78]. We will refer to their framework and its various
extensions as RaDiO throughout this book. Like [75], RaDiO considers the
unequal importance of packets. Its aim is to find an optimal schedule which
minimizes the Lagrangian cost D + λR, where D represents the expected
distortion and R is the average transmission rate. The algorithm considers
consecutive time slots in which each packet can potentially be transmitted
and optimizes the schedules of different packets iteratively until convergence.
The complexity is reduced by considering a limited time horizon, and opti-
mized policies are recomputed, at each new time step, taking into account
feedback. RaDiO has been extended by Kalman et al. to include the impact
of error concealment that better reflects the properties of video streams [79].
Its performance has been studied for different configurations by Chakareski
et al., notably for server-driven and receiver-driven scenarios [80, 81].

A particular challenge of the RaDiO framework is its computational com-
plexity. As noted in [82], optimization is NP-hard and can be cast as a variation
of the classic knapsack problem. In addition, Röder et al. show that the itera-
tive descent algorithm suggested by Chou and Miao does not always guarantee
good solutions [82]. As an alternative, low-complexity schemes based on the
formulation of Chou and Miao have been proposed [83, 84]. Another serious
limitation is that the work in this area has usually considered vastly over-
provisioned networks where the impact of the transmitted stream itself on
end-to-end delay can be neglected. Although the performance of RaDiO has

2.2 Video Streaming 11

sometimes been studied in simulations replicating delay patterns and losses
collected from the Internet [85, 84] or for time-varying statistics [86, 87], the
case of scheduling the media stream over a throughput-limited network, prone
to congestion, which we address in this work has not been investigated in
depth.

Error Concealment

When losses cannot be avoided, error concealment is used at the decoder
as the last line of defense. The most common technique is that of simple
frame repetition, which requires no additional computation but does not cor-
rect visual artifacts. Temporal linear interpolation algorithms can also be
easily implemented at the decoder to create new frames. They create signif-
icant ghosting artifacts in the case of large displacements. More advanced
schemes have been proposed based on a combination of spatial and tempo-
ral motion-compensated interpolation. These techniques estimate motion and
create an image by displacing objects (e.g., pixels or macroblocks) along com-
puted trajectories [88, 89, 90, 91].

2.2.2 Congestion Control

When bandwidth is limited, congestion control algorithms are needed to al-
locate a fair share of the network path’s throughput to a video streaming
application. Some commercial applications use multiple-file switching to offer
a choice between video streams compressed at different bit rates [92]. Another
simple alternative is to let TCP regulate the communication at the transport
layer [93]. However, because of the resulting fluctuating throughput due to its
additive increase and multiplicative decrease behavior, this method is not well
suited to low-latency applications and causes frequent buffer underruns at the
receiver. Therefore, congestion control schemes such as TCP-Friendly Rate
Control (TFRC) [94] or other equation-based rate control algorithms [95],
which smooth out the sudden rate variations of TCP, have been considered
to estimate for the streaming system a suitable transmission rate. In the case
of wireless channels, other throughput estimators are often employed as it is
important to differentiate between losses due to congestion or to corruption
on the wireless medium [96, 97, 98, 99].

The rate derived by the transport layer is relayed to the application layer
which adapts accordingly. In live encoding systems, a control mechanism is
used to adjust the quantization and modulate the size of the stream produced
by the encoder [100, 101, 102, 103, 104, 105]. For pre-encoded video, through-
put can be adapted by discarding successive layers of a scalable representation
as in [106, 107] and in [108, 109] for the case of a scalable H.264 bitstream.
For a single-layered coding scheme, transcoding the stream allows to reduce
the bitrate and bypass the computational overhead of re-encoding. Such tech-
niques are reviewed in [110]. Another possibility is to use H.264 SP frames

12 2 Background

to switch between different quality streams [111, 112, 113]. In this book, we
consider single-layer encoding. The goal of our content-adaptive scheduler is
to determine an optimal tradeoff between congestion created over the network
and decoded video quality, by selecting the most important portions of the
video to transmit in priority.

2.2.3 Path Diversity

Path diversity at the network layer can also help improve the overall per-
formance of a streaming system. A sender may, for example, select the best
end-to-end network path in terms of bandwidth, losses, or delay, or distribute
a media stream along different routes.

On the Internet, as today’s routers do not support source routing between
two end hosts, path diversity can be obtained, for example, by means of an
overlay of relay nodes [114, 115]. When losses are correlated, splitting video
packets between different independent routes is a way to protect the bitstream
from consecutive losses, which can have dramatic impact on decoded video
quality [35]. This technique is often combined with multiple description coding
to send independently decodable streams over different paths [115, 116, 117,
118, 119, 120]. When the probability of simultaneous losses on the paths is
low, the error resilience increases at the cost of lower compression efficiency.
For video coding, multiple descriptions can be obtained by temporal or spatial
sampling e.g. [121, 122], or by using different transforms and quantizers [123,
124, 125, 126, 127]. When feedback is available, the sender can also simply
decide to switch to a more reliable route when burst losses are detected [57, 59].
Another approach is to use an optimized algorithm, such as RaDiO, to perform
both path selection and packet scheduling [87, 128, 129, 130].

Different systems have been proposed to combine the resources of multi-
ple servers or of multiple peers to achieve higher throughput. In [131, 132],
a video client determines how to allocate rate between several throughput-
limited forwarders to maximize received video quality. In addition, losses over
the different paths can be mitigated by protecting the streams with FEC in a
synchronized fashion [118, 133, 134]. Distributing video traffic along different
routes also has merit in the case of wireless ad hoc networks as long as inter-
ference along concurrent paths is limited. This idea has been investigated to
achieve higher aggregate throughput in [135, 136] or to provide redundancy
when mobility causes a path to fail as in [137, 138]. In these cases, the statistics
are monitored periodically and new paths are sometimes necessary to adapt
the routing to the network conditions or to node mobility.

In the work we present, we take advantage of multi-path streaming since
different peers are used to transmit complementary portions of a video stream.
The peer-to-peer architecture presented in Chapter 4 and in Chapter 5 lever-
ages diversity for error resilience by requesting packet retransmissions over
alternate paths.

2.3 Multicast Architectures 13

2.3 Multicast Architectures

The aim of the P2P video streaming system we analyze in Chapters 4 and 5
is to distribute a video stream synchronously (i.e., multicast) to a large popu-
lation of viewers. In this section, we review alternative architectures designed
for video multicast which do not use P2P networks.

2.3.1 IP Multicast

In IP multicast systems, a source transmits a single stream which is repli-
cated by the routers of the network to achieve one-to-many distribution. This
system, initially proposed by Deering [139], lets different receivers access the
stream by subscribing to the corresponding multicast group maintained by
the routers. Although this architecture is elegant as it places minimal burden
on the network resources, multicast is not universally deployed and is not
available outside proprietary networks or research networks such as Mbone.

A question for multicast systems, in general, is how to find an equivalent to
the adaptability of unicast systems [140, 141]. This is particularly important
in the case of bandwidth heterogeneity. To protect networks from feedback
implosion, techniques which do not rely on acknowledgments, or end-to-end
signalling, have been designed and go beyond the simple approach of satisfying
the requirement of the receiver with the worst performance limitations. Such
systems may rely on layered video coding where the base layer and each of the
enhancement layer form different multicast streams which a user can subscribe
to. Determination of the optimal number of layers is performed by the client,
which can adjust this parameter if its available throughput varies [142].

To provide reliability to multicast video transmission, some authors have
suggested to employ retransmission requests in the event of packet loss as
mentioned in [143]. Such feedback-based schemes need to be made scalable
in the multicast context which assumes forming groups of receivers and some
kind of priority or hierarchy to limit the bandwidth on the back channel as
in [144]. If the loss rate can be estimated accurately, full reliability can be
achieved even in the case of losses, through FEC [145, 146]. UEP techniques,
mentioned above for the server-client scenario, have also been extended to IP
multicast [147].

2.3.2 Content Delivery Networks

Today, one-to-many commercial streaming solutions are offered via con-
tent delivery networks (CDNs), such as Akamai, Limelight or VitalStream
[148, 149, 150]. They are based on an overlay of replication or mirror servers,
to which users are redirected when the maximum number of streams of an in-
dividual media server (typically between a few hundred and a few thousand)
is exceeded. The design issues and performance evaluation of one of these
leading networks is described in detail in [151].

14 2 Background

As the number of mirror servers increases, the scalability of the system
grows as a larger user base can be supported. In addition, it becomes easier to
offer some guarantees in terms of content availability or robustness to losses.
Understanding and improving the tradeoffs between the cost of the system and
these performance improvements is the focus of research on content replication
algorithms which indicate how many mirror servers are needed and where they
should be placed [152, 153, 154, 155].

When the content distributed by the overlay is a live media stream, dy-
namic algorithms are employed to adapt, in real-time, to the varying number
of users and to their location. Protocols run by the different overlay nodes cre-
ate a distribution tree between the broadcast source and the different overlay
nodes [156, 157, 158]. This tree can approach the efficiency of IP multicast
when the overlay nodes form a dense enough set of edge servers.

2.4 Peer-to-Peer Systems

Peer-to-peer (P2P) systems are a special type of overlay network where there
is little or no dedicated infrastructure and the peers, or clients, act as poten-
tial forwarders and, more generally, contribute their resources to the system
[159]. This concept has many applications which range from grid computing,
to distributed storage or, as considered in this book, real-time media delivery.
Today’s most popular systems are mostly driven by media file sharing. The
most popular ones, e.g., eDonkey and BitTorrent (or any client running these
protocols) have millions of users and represent a large portion of Internet traf-
fic [1]. One of these clients, eMule, has reportedly been downloaded over 300
million times as of April 2007, which makes it the most successful open source
project to date [160]. In these systems, different peers coordinate to down-
load files, without requiring costly webservers to host and transmit content.
The distributed nature of these systems require specific protocols to locate,
store or download content, and has fostered a large amount of research and
development in both the academic and open source communities. All these
goals are shared by P2P streaming systems which incorporate, in addition, a
latency constraint. In this section, we give an overview of the widely deployed
BitTorrent protocol, describe recent advances in the area of P2P file sharing
protocols, and finally focus on P2P streaming systems which will be a central
topic of this book.

2.4.1 Peer-to-Peer File Transfer, the Example of BitTorrent

BitTorrent is an open source protocol [161] which was created in 2001 by Bram
Cohen, to overcome the shortcomings of prior P2P systems. In particular,
BitTorrent aims at fully utilizing the uplink throughput of peers which have
downloaded or are downloading a particular file. The main characteristics of
the BitTorrent protocol include:

2.4 Peer-to-Peer Systems 15

• Dividing files into small chunks of data, which can be downloaded by a
peer independently of each other, and providing a simple system to check
the integrity of each chunk.

• Incorporating simple uploading rules in the clients to enhance the perfor-
mance of the system in terms of download speed, and of lifetime of a file
in the P2P network. These include downloading the rarest chunk first and
reciprocation, i.e., “tit-for-tat” uploading.

The original BitTorrent system was successful at creating a large com-
munity of users, moderated by some active members, in charge of inspecting
each new file in the P2P system, in order to maintain high quality and avoid
pollution.

A BitTorrent system is composed of four parts. The first component is
the seed , a user who has a complete copy of a file she wishes to share with
other peers. The second component is the .torrent file. This file is created
by a seed and published on a regular webserver. It contains enough meta-
data to describe the file: the number of chunks into which data is separated
and the SHA-1 [162] signature of each chunk, used to verify the integrity of
the file, as it is being downloaded. In addition, it also indicates the address
of a tracker . Trackers are the third component of BitTorrent systems. They
are hosts which continuously monitor the download of the file by storing the
addresses of the different peers which have downloaded or are downloading
the file, as well as some additional information reflecting their performance.
Finally, the fourth component are the actual peer nodes. The peers initially
access the .torrent file, register with the corresponding tracker, and use it
to obtain a list of connected peers. They locate missing chunks of the file
by exchanging their buffer map with other active peers. These maps indicate
the chunks they hold and the ones they are missing. Uploads and downloads
between peers are negotiated following rules which we describe in the next
paragraph. Periodically, peers report their download status to the tracker of
the .torrent file. A detailed description of the syntax and implementation
of the BitTorrent protocol has been made available to the public [161], and
has resulted in a flurry of BitTorrent compliant clients, which compete on the
quality of their content, of their client, and of their community. Some of these,
notably, include Azureus, utorrent, ABC, TurboBT, BitComet, as well as the
original BitTorrent client.

Once a BitTorrent client has obtained a list of active peers from the tracker,
it locates different chunks of the file by exchanging its buffer map (initially
empty) with the other members of the session. It then requests the rarest
chunks from the peers which hold them. This strategy decreases the likelihood
that a torrent will die as a consequence of one of the chunks disappearing from
the network. This, obviously, would preclude any download from completing.
Peers serve a small number of incoming requests simultaneously (typically 4).
The speed at which the chunks are uploaded is dictated by TCP. When choos-
ing among different requests, priority is given to requests from peers which

16 2 Background

themselves have provided chunks previously. This prioritization is known as
the “tit-for-tat” rule. A small number of connections (typically 1) is also re-
served for serving peers, regardless of the amount of data these peers have
provided in the past. This is particularly advantageous for peers which have
recently joined and which have not yet been able to provide any data. The
motivation for this altruistic “optimistic unchoking” rule is that it may result
in establishing a high-speed connection to a new peer which may be worth-
while in the future, as a consequence of tit-for-tat. Finally, when almost all
the pieces have been downloaded, a peer will try to get the same remaining
chunks from multiple peers at once to avoid being held up by a peer with a
slow connection.

The emergence of large P2P file transfer systems with large amount of users
and traffic has enabled researchers to investigate and attempt to model user
behavior [163, 164], or to study the evolution of large distributed systems,
e.g., [165, 166]. Several improvements to systems like BitTorrent have also
been proposed, e.g., [167, 168, 169].

In one particularly interesting direction one tries to avoid any centralized
index whatsoever. In the case of Napster, a centralized index was used to hold
a list associating the files present on the network to the address of computers.
In BitTorrent, a centralized list of peers is held by the tracker. The lack of any
centralized index (largely motivated by piracy) creates an interesting challenge
in terms of content discovery. A significant amount of work has addressed the
problem of how to locate a file among a large set of users given its name
and the IP addresses of a very limited set of connected peers. Beyond the
simpler flooding approach [167], proposed solutions rely on distributed hash
tables (DHT) which map a key, representing a file, to a value, indicating
a peer, and are distributed among the users. As each peer only maintains
a small part of the table, the algorithms also indicate how queries can be
conducted on the whole table efficiently, through message exchanges. Such
systems, including the popular Chord, CAN, and Pastry, are analyzed in
[170, 171, 172, 173, 174, 175], where their scalability, efficiency and resilience
are examined.

The BitTorrent protocol has proven to be very reliable as a result of its
simplicity. One of its main characteristics is that it is data-driven. Peers look
for particular pieces of data, regardless of the peers which hold them. This
differs from other approaches where clients try to identify peers which hold
the data and establish lasting connections to them, as, for example, in Kazaa,
one of BitTorrent predecessors. This data-driven approach avoids the need of
precisely measuring the amount of available throughput of different peers and
monitoring the different connections. This distinction between data-driven
protocols and connection-driven protocols, or, as these approaches are also
referred to, between un-structured and structured systems [176] also exists in
P2P video streaming systems.

2.4 Peer-to-Peer Systems 17

2.4.2 Peer-to-Peer Streaming

In P2P streaming systems, a critical requirement is to operate the media
distribution continuously. Hence, the difficulty resides not only in content
location, but also in resource location, as peers need to discover which other
connected hosts have enough throughput to act as forwarders and relay the
media stream they have received. To the best of our knowledge, one of the
earliest proposals for this type of system is by Sheu et al. [177], which focuses
on building a distributed video-on-demand system for ATM networks. More
recent work on P2P asynchronous video streaming can be found in [178, 179,
180, 181], and a good deployment example is the P2P client Joost, which
improved the progressive download feature originally incorporated in Kazaa,
to offer on-demand viewing of pre-recorded television shows.

The concept of live P2P multicast was made popular by Chu et al. [182]
who suggested taking advantage of the resources of the users to form a dy-
namic delivery network which would offer the same viewing experience as live
television. The idea is appealing as it does not require any infrastructure and
is, in theory, self-scaling, as the number of peer servers and peer clients in-
crease at the same rate. Even though this field is still in its early stages, it has
become, in the last few years, a very active area of research. Many proposed
systems rely on distributed protocols to construct one or several multicast
trees between the media source and the different users to distribute the stream
[183, 184, 185, 186]. Another approach lets peers self-organize in a mesh and
request different portions of the video from their neighbors, with no particular
emphasis on the structure of the distribution path [187, 188, 189]. Along with
these early research experiments, many applications have appeared on the
Internet, such as PPLive, PPStream, TVU networks, Zattoo, etc. One of the
main goals of these applications is to enable the largest possible set of users
to connect to each other by integrating to their protocol Network Address
Translator (NAT) and firewall traversal techniques. These problems have been
partially resolved via protocols which employ third-party rendez-vous servers
[190, 191, 192, 193, 194]. All these implementations constitute very exciting
progress and demonstrate the feasibility of large-scale P2P streaming. As an
example, both PPLive and Gridmedia [188] have been reported to support
over 100,000 peers simultaneously with a small number of servers. However
all these systems typically suffer from long startup delays (possibly on the
order of minutes) and often cannot sustain constant video quality.

In the second half of the book, we study a live P2P streaming system,
based on a protocol which constructs and maintains multiple multicast trees.
We analyze the unique issues of video transport over P2P networks, and no-
tably consider the impact of multimedia packet scheduling on the overall per-
formance, focusing especially on low latency. We show that to achieve better
performance in P2P video streaming systems, application-layer multicast and
video transport should be considered jointly. The closest work that we know
of is that reported in [195] and in [196, 197], which associate separate layers

18 2 Background

or video descriptions with different application-layer multicast trees and FEC
for robustness. This differs from our approach which is based on distortion-
optimized techniques for scheduling of transmissions and retransmissions of a
single-layer stream.

3

Streaming over Throughput-Limited Paths

Streaming real-time media might increase the congestion of bottleneck links.
This may disrupt the transmissions of other users and even delay the delivery
of the media stream itself. In the first part of this chapter, we analyze the
impact of self-congestion on the performance of a low-latency media streaming
system operating over a throughput-limited network path. We present a rate-
distortion model which captures both the effect of compression and of late
losses due to congestion on the decoded video quality of the system. This
model is helpful to determine how close to the physical channel capacity a
low-latency video streaming system can operate.

In the second part of the chapter, we present the concept of congestion-
distortion optimized (CoDiO) streaming. This is one of the main contributions
of this book. Our work builds on the RaDiO scheduling framework, which con-
siders unequal contributions of different portions of a multimedia data stream
to the overall distortion. Rather than searching for an optimal schedule for
the packets of a stream, which minimizes the expected Lagrangian cost of
rate and distortion, we suggest changing metric and replacing rate by conges-
tion, which we define, throughout this book, as expected end-to-end delay.
We explain why congestion is better suited to throughput-limited streaming,
and describe how, given a simple channel model, CoDiO scheduling is per-
formed. We also present a low-complexity version of our algorithm, CoDiO
light, simple enough to run in real-time. Experimental results analyze the per-
formance of CoDiO and CoDiO light compared to a content-oblivious ARQ
scheduler. We also analyze how our congestion-distortion schedulers compare
to the state-of-the-art RaDiO scheduler.

3.1 Video Encoding for Throughput-Limited Paths

In this section, we present a model to estimate the highest sustainable rate,
given a fixed encoding structure, for a video streaming system operating at
low latency over a throughput-limited network path.

20 3 Streaming over Throughput-Limited Paths

3.1.1 End-to-End Rate-Distortion Performance Model

In low-latency streaming applications, compressed video is transmitted over a
network at a given rate. Typically, it is desirable to achieve end-to-end delays
of no more than a few hundred milliseconds. When a packet does not arrive at
the receiver by its playout deadline, to avoid interruptions, the decoder con-
ceals the missing information and the playout continues at the cost of higher
distortion. Decoded video quality at the receiver is therefore affected by two
factors: quantization errors introduced at the encoder while compressing the
media stream, and packet loss either caused by transmission errors or due to
late arrivals. These two contributions have different characteristics. Typically,
the distortion introduced by quantization is evenly distributed across the en-
coded frames and is determined by the encoding bit-rate. This contrasts with
the impact of packet loss which usually introduces decoding errors (i.e., higher
distortion) in the frame(s) containing the missing packet(s). Because of the
predictive nature of the compressed video stream, this error will propagate
to subsequent frames. Usually, these errors tend to decay over time due to
intra-macroblock coding and in-loop filtering. Error propagation is eventu-
ally stopped when an intra-coded frame is received. Using Mean Square Error
(MSE) as the criterion, a video distortion model can be derived based on [31]1.
The decoded video distortion, denoted by Ddec, comprises two terms:

Ddec = Denc + Dloss, (3.1)

where the distortion for the encoder performance Denc and the contribution
from packet loss Dloss are described in greater detail in the following.

Encoder Distortion Model

The distortion introduced by encoder quantization is reduced when the se-
quence is encoded at a higher rate. As the coding rate increases, however,
the same amount of distortion reduction requires a greater rate increment. In
[31], this distortion-rate tradeoff is modeled for H.263 P frame encoding, by
a simple formula:

Denc = D0 + Θ/(R − R0), (3.2)

where R is the rate of the video stream, and D0, Θ and R0 are model pa-
rameters. Using nonlinear regression techniques, these parameters can be esti-
mated from empirical rate-distortion curves obtained by encoding a sequence
at different rates. Interestingly, we have observed that this model can also
be extended to sequences encoded by H.264, with more complicated GOPs,
incorporating I, B, P pictures as well as SP and SI pictures [135, 198, 199]. In

1 Part of the derivation presented in this section is reproduced with permission
from [198] c© 2004 IEEE and from [135] c© 2005 Elsevier.

3.1 Video Encoding for Throughput-Limited Paths 21

this case, the parameters D0, Θ and R0 need to be estimated for the specific
GOP structure considered. As an illustration, Fig. 3.2 shows the model fit for
six CIF sequences, encoded by H.264 for the GOP structure shown in Fig. 3.1.
Please note that the same GOP structure will be used for all the experimental
results presented in this chapter. More details on the peak-signal-to-noise-ratio
(PSNR) metric used to measure video quality and on the sequences can be
found in Appendix A.

Fig. 3.1. Group of pictures and their encoding structure. The first picture of the
group is an I frame, it is encoded using intra-prediction only. Differential coding
is used to compress P frames and B frames. P frames are encoded after forming
a motion-compensated prediction based on a preceding frame, as depicted by the
prediction arrows. B frames are bi-directionally predicted frames, they depend on
the neighboring P frames or I frames. This coding structure is periodically repeated
to encode the entire video sequence.

Distortion from Loss

The contribution of packet losses to decoded video distortion has been an-
alyzed in detail in [31]. The additional distortion introduced by packet loss
depends not only on channel statistics such as packet loss rate, but also on
the properties of the encoded sequence such as the percentage of intra-coded
macroblocks or the effectiveness of error concealment at the decoder.

Assuming no feedback information and small loss rates, Dloss is shown to
be linearly related to the frame loss rate Ploss as:

Dloss = κPloss, (3.3)

where the scaling factor κ reflects the sensitivity of the encoded video sequence
to losses. Figure 3.3 shows how κ is determined experimentally for 6 different
sequences. In this experiment, frames are dropped uniformly at random for
different loss rates. The resulting decoded distortion is collected and shown
in Fig. 3.3. Sequences are encoded by H.264 for the GOP structure shown in
Fig. 3.1. They are looped 80 times to obtain stable results. When a frame is
lost, previous frame concealment is applied, as explained in Appendix A.

The value of κ indicates the difficulty to conceal losses and reflects the
level of activity of the sequences. High activity sequences such as Foreman and
Mobile have higher κ than low activity sequences such as Mother & Daughter.
Results of additional experiments indicate that κ does not vary much with
the encoding rate.

22 3 Streaming over Throughput-Limited Paths

100 200 300 400 500 600 700 800
28

30

32

34

36

38

40

42

Rate (kb/s)

P
S

N
R

 (
dB

)
Container

Data fitting parameters
D

0
 = 0.03

R
0
 = 9.5 kb/s

Θ = 3825

200 400 600 800 1000 1200 1400 1600
28

30

32

34

36

38

40

42

Rate (kb/s)

P
S

N
R

 (
dB

)

Foreman

Data fitting parameters
D

0
 = 0.55

R
0
 = 23.2 kb/s

Θ = 6646

500 1000 1500 2000 2500 3000 3500 4000 4500

24

26

28

30

32

34

36

38

40

Rate (kb/s)

P
S

N
R

 (
dB

)

Mobile

Data fitting parameters
D

0
 = −4.51

R
0
 = 39.4 kb/s

Θ = 45266

100 200 300 400 500

32

34

36

38

40

42

44

Rate (kb/s)

P
S

N
R

 (
dB

)

Mother and Daughter

Data fitting parameters
D

0
 = −0.35

R
0
 = −0.1kb/s

Θ = 1503

100 200 300 400 500 600 700

30

32

34

36

38

40

42

44

Rate (kb/s)

P
S

N
R

 (
dB

)

News

Data fitting parameters
D

0
 = −2.94

R
0
 = 22.3 kb/s

Θ = 3620

200 400 600 800 1000 1200 1400

28

30

32

34

36

38

40

42

Rate (kb/s)

P
S

N
R

 (
dB

)

Salesman

Data fitting parameters
D

0
 = 1.21

R
0
 = 7.5 kb/s

Θ = 4507

Fig. 3.2. Encoder distortion fit for 6 sequences. Video quality is measured in terms
of PSNR, represented in dB and rate is shown in kb/s. The values indicated for the
three parameters D0, R0 and Θ are used throughout this chapter.

3.1 Video Encoding for Throughput-Limited Paths 23

0 0.02 0.04 0.06 0.08 0.1 0.12
12

14

16

18

20

22

24

26

28

30

32
Container

Loss rate

M
ea

n
S

qu
ar

ed
 E

rr
or

experiment
fit

0 0.02 0.04 0.06 0.08 0.1 0.12
20

30

40

50

60

70

80

90

100
Foreman

Loss rate

M
ea

n
S

qu
ar

ed
 E

rr
or

experiment
fit

0 0.02 0.04 0.06 0.08 0.1 0.12
150

200

250

300

350

400

450

500
Mobile

Loss rate

M
ea

n
S

qu
ar

ed
 E

rr
or

experiment
fit

0 0.02 0.04 0.06 0.08 0.1 0.12
4

5

6

7

8

9

10

11

12

13
Mother and Daughter

Loss rate

M
ea

n
S

qu
ar

ed
 E

rr
or

experiment
fit

0 0.02 0.04 0.06 0.08 0.1 0.12
5

10

15

20

25

30

35
News

Loss rate

M
ea

n
S

qu
ar

ed
 E

rr
or

experiment
fit

0 0.02 0.04 0.06 0.08 0.1 0.12
14

16

18

20

22

24

26

28

30

32
Salesman

Loss rate

M
ea

n
S

qu
ar

ed
 E

rr
or

experiment
fit

Fig. 3.3. Linear regression to determine the value of the parameter κ for 6 sequences.
The encoding rate for the different sequences is as follows. Container: 283 kb/s, Fore-
man: 290 kb/s, Mobile: 306 kb/s, Mother and Daughter: 319 kb/s, News: 319 kb/s,
Salesman: 311 kb/s. The estimated value of κ for the different sequences is as fol-
lows. Container: 143, Foreman: 580, Mobile: 2262, Mother and Daughter: 64, News:
180, Salesman: 130.

For low-latency streaming, Ploss reflects the combination of random losses
and late arrivals of video packets. When the capacity of the network path
between the sender and the receiver is limited, we suggest using the M/M/1
queuing model to express this probability. If we consider the channel as a
single-hop path and assume the traffic on this link to be exponentially dis-
tributed, the late loss probability is expressed:

Prob{Delay > T } = e−λT , (3.4)

24 3 Streaming over Throughput-Limited Paths

where λ is determined by the average delay:

E{Delay} = 1/λ = L/(C − R). (3.5)

In (3.5), C is the capacity of the link, R is the rate, and L is the packet size.
In practice, however, video frames are transmitted at regular intervals over
one or several multi-hop paths, the situation is therefore different from that
captured by this simple model, where arrivals follow a Poisson process and
packets have exponentially distributed service times. Nevertheless, we suggest
to model the probability of late loss by an exponential:

Prob{Delay > T } = e−(C′−R)T/L′
, (3.6)

In (3.6), R represents the total transmitted rate; C′ is the capacity, i.e., the
capacity of the bottleneck in the case of single path transmission, or the
aggregate capacity of the paths in the case of multi-path transmission; T is
the playout deadlines, this quantity is defined in Appendix A. As traffic does
not follow the Poisson distribution, the parameter L′ needs to be determined
empirically.

We verify that the delay of video packets can be approximated by an expo-
nential distribution and determine the parameter L′ by running the following
experiment. Video packets are transmitted over a 375 kb/s bottleneck link and
their end-to-end delay is collected. Video frames are sent, at regular intervals,
30 times per second, in their encoding order. The sequences are encoded at
around 300 kb/s (precise rates for the 6 different sequences are indicated in
the caption of Fig. 3.4) and are looped 40 times. The encoding structure is
depicted in Fig. 3.1. The empirical frame loss rate for the different sequences
is shown for different playout deadlines in Fig. 3.4. The exponential model
curve is also shown alongside the empirical results. It follows (3.6), where
C′ = 375 kb/s, and R is the encoding rate of the different sequences. The
value of L′ = 4 kbit is computed by minimizing the mean square error be-
tween the model and the empirical curves at the points represented in the
figure, for playout deadlines between 250 ms and 900 ms2. Results for a sim-
ilar experiment are shown in Fig. 3.5, for encoding rates of approximately
700 kb/s and a 750 kb/s bottleneck link. In this case, we determine the op-
timal value L′ = 8 kbit, again by minimizing the mean square error between
the model and the empirical curves at the points represented in the figure, for
playout deadlines between 250 ms and 900 ms. This increase is not surprising
as L′ reflects the average frame size.

As shown in the figure, the fit between the empirical distribution and the
model is acceptable for all the sequences. It is better for the sequence Mother
and Daughter and worse for the sequence News. The shape of the empirical
distribution is a consequence of the packet size variation in the video stream.
This variation is due to the fact that frames of different types have very dif-
ferent sizes, I frames are 3 to 10 times larger than P frames which, in turn,
2 This is a simple convex optimization problem.

3.1 Video Encoding for Throughput-Limited Paths 25

are 2 to 7 times larger than B frames. The variation is also due to frame size
increases or decreases which occur when the content of the scene changes or
when the motion in the sequence varies. These are particularly noticeable in
Foreman and in Mother and Daughter, as illustrated in Appendix A. Cross
traffic is yet another reason for adopting the exponential model, as random
arrivals of cross-traffic packets will contribute to increasing the delay spread
of video packets. However, experiments show that for cross-traffic rates be-
low 50% of the capacity, and for exponentially distributed cross traffic, the
influence of cross traffic on the loss rate is minimal, as long as C′ remains
constant.

By combining (3.6) with a random frame loss rate Pr, independent of the
congestion created over the network, we obtain the overall loss rate:

Ploss = Pr + (1 − Pr)e−(C′−R)T/L′
. (3.7)

The total distortion contribution due to packet loss is:

Dloss = κPloss = κ(Pr + (1 − Pr)e−(C′−R)T/L′
). (3.8)

Total Distortion

The received video distortion can be expressed by regrouping (3.1), (3.2) and
(3.8):

Ddec = Denc + Dloss

Ddec = D0 + Θ/(R − R0) + κ(Pr + (1 − Pr)e−(C′−R)T/L′
). (3.9)

The proposed formula models the impact of the rate on the video distor-
tion. Specifically, this model expresses that at lower rates, reconstructed video
quality is limited by coarse quantization, whereas at higher rates, the video
stream will lead to more network congestion and to longer packet delays, which
in turn will cause higher probability of late packets, hence reduced quality. For
low-latency video steaming in bandwidth-limited environments, we therefore
expect to achieve maximum decoded quality for some intermediate rate.

Optimal Encoding Rate

The optimal encoding rate, R∗, is obtained by setting to zero the derivative
of (3.9) with respect to R. This reduces to:

√
ΘL

κT (1 − Pr)
e−(C′−R∗)T/2L′ − R∗ + R0 = 0. (3.10)

Although we know of no closed-form solution for (3.10), there is no difficulty
in solving this equation numerically.

26 3 Streaming over Throughput-Limited Paths

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Container

Playout deadline (s)

P
ro

ba
bi

lit
y

of
 lo

ss

Model
Experiment 1
Model
Experiment 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Foreman

Playout deadline (s)

P
ro

ba
bi

lit
y

of
 lo

ss

Model
Experiment 1
Model
Experiment 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Mobile

Playout deadline (s)

P
ro

ba
bi

lit
y

of
 lo

ss

Model
Experiment 1
Model
Experiment 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mother and Daughter

Playout deadline (s)

P
ro

ba
bi

lit
y

of
 lo

ss

Model
Experiment 1
Model
Experiment 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
News

Playout deadline (s)

P
ro

ba
bi

lit
y

of
 lo

ss

Model
Experiment 1
Model
Experiment 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Salesman

Playout deadline (s)

P
ro

ba
bi

lit
y

of
 lo

ss

Model
Experiment 1
Model
Experiment 2

Fig. 3.4. Empirical frame loss rate for different playout deadlines compared to an
exponential model for six CIF sequences. The comparison is shown for two different
rates. The encoding rate for the different sequences and the different experiments
are as follows. Container: 283 kb/s and 327 kb/s, Foreman: 290 kb/s and 338 kb/s,
Mobile: 306 kb/s and 342 kb/s, Mother and Daughter: 319 kb/s and 368 kb/s, News:
319 kb/s and 358 kb/s, Salesman: 311 kb/s and 364 kb/s. The bottleneck rate is
375 kb/s.

3.1 Video Encoding for Throughput-Limited Paths 27

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Container

Playout deadline (s)

P
ro

ba
bi

lit
y

of
 lo

ss

Model
Experiment 1
Model
Experiment 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Foreman

Playout deadline (s)

P
ro

ba
bi

lit
y

of
 lo

ss

Model
Experiment 1
Model
Experiment 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Mobile

Playout deadline (s)

P
ro

ba
bi

lit
y

of
 lo

ss

Model
Experiment 1
Model
Experiment 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Mother and Daughter

Playout deadline (s)

P
ro

ba
bi

lit
y

of
 lo

ss

Model
Experiment 1
Model
Experiment 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
News

Playout deadline (s)

P
ro

ba
bi

lit
y

of
 lo

ss

Model
Experiment 1
Model
Experiment 2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Salesman

Playout deadline (s)

P
ro

ba
bi

lit
y

of
 lo

ss

Model
Experiment 1
Model
Experiment 2

Fig. 3.5. Empirical frame loss rate for different playout deadlines compared to an
exponential model for six CIF sequences. The comparison is shown for two different
rates. The encoding rate for the different sequences and the different experiments
is as follows. Container: 582 kb/s and 682 kb/s, Foreman: 587 kb/s and 677 kb/s,
Mobile: 600 kb/s and 686 kb/s, Mother and Daughter: 567 kb/s and 687 kb/s, News:
630 kb/s and 702 kb/s, Salesman: 524 kb/s and 627 kb/s. The bottleneck rate is
750 kb/s.

28 3 Streaming over Throughput-Limited Paths

3.1.2 Experimental Results

In this section, we assess the accuracy of the proposed model by comparing it
to experimental results collected over a network simulated in ns-2 [200]3. In
addition, we evaluate the amount of over-provisioning necessary to maximize
the end-to-end video quality and analyze how it relates to various parameters.

Experimental Setup

We evaluate the performance of a simple video streaming system as follows.
A video stream, encoded with H.264, is sent from a sender to a receiver over a
multi-hop path. The total propagation time along the path is very short (i.e.,
5 ms). In the first scenario, the capacity of the bottleneck link is 500 kb/s and
we consider a low-latency application where packets have just a few hundred
milliseconds to reach the receiver or else they are considered lost. In addition
to video traffic, the bottleneck link also carries 125 kb/s of cross traffic (one
fourth of the link capacity). Cross traffic is specified as a random process, with
exponentially distributed packet sizes and arrivals. In this case, the average
packet size is 1500 bits, and the average inter-arrival time is 12 ms. We also
consider another scenario, with higher throughput, in which the capacity of
the bottleneck is 1 Mb/s. The rate of the cross traffic is 250 kb/s (one fourth
of the link capacity), with an average packet size of 1500 bits, and an average
inter-arrival time of 6 ms.

We collect results for sequences encoded at various rates with H.264. The
encoding structure is that shown in Fig. 3.1. The Variable Bit Rate (VBR)
encodings are generated by using a constant quantization parameter for I, P
and B frames for the whole sequence. Different rates are obtained by vary-
ing this quantization parameter. No rate control is used. More detail on the
encoded sequences is given in Appendix A.

Video frames are sent, at regular intervals, 30 times per second, in their
encoding order. In this set of experiments, there is no retransmission and
no feedback from the receiver. We loop the 10-second video clips 60 times to
ensure statistically significant results. At the transport layer, the video frames
are sent over UDP and encoded frames exceeding the maximum transmission
unit (MTU) size of 1500 bytes are fragmented before being sent. When one of
these packets is delayed beyond its playout deadline, the frame it belongs to
is discarded and we use previous frame concealment until the next decodable
picture, as explained in detail in Appendix A.

Analysis

Results for a 500 kb/s bottleneck link and different playout deadlines are
shown in Fig. 3.6, along with the fitted model, and in Fig. 3.7 for a 1 Mb/s
3 Please note that, in this book, all the results pertaining to streaming experiments

are collected in this simulation environment.

3.1 Video Encoding for Throughput-Limited Paths 29

bottleneck. The curves are obtained by first fitting the parameters R0, D0, Θ
to the rate-distortion curves of the encoded sequences, as shown in Fig. 3.2.
The throughput, C′, is 375 kb/s and 750 kb/s, respectively (this is obtained by
subtracting the rate of cross traffic to the physical capacity of the bottleneck
link). κ and L′ were determined in the previous section for these values of C′.

While the low rate region of the curve follows closely the encoder rate-
PSNR performance as few packets experience excessive delays, there is a sharp
degradation when the rate exceeds a certain threshold. This is the region
where the bottleneck is overwhelmed, at times, by the video stream. As shown
in Fig. 3.6, for a playout deadline of 250 ms, the drop-off occurs at rates
well below the physical capacity for all the sequences except for Mobile, and
similarly, in Fig. 3.7, for a playout deadline of 150 ms, for all the sequences.
For longer playout deadlines, i.e., 500 ms and 250 ms, respectively, the drop-
off is only observed for 2 of the 6 sequences, namely, for Foreman and Mother
and Daughter. Despite the presence of cross traffic, these results are predicted
very accurately by the curves shown in Fig. 3.4 and Fig. 3.5 which indicate,
for rates close to capacity, the playout deadline for which losses begin to
occur. Depending on the content of the sequence, drop-offs occur for different
reasons. For most cases (namely, for Foreman, Mother & Daughter, Salesman,
and News), losses of one or several I frames occur following a rate increase in
the sequence which causes an increase in the queuing delay. For the other two
sequences, (namely, Mobile and Container), the limiting factor is the size of
the I frames which limits very low latencies, regardless of the queuing delay.
As a reference, rate variations of the different sequences are illustrated in the
curves shown in Appendix A.

The curves of the model accurately predict the performance in most of
the cases. The differences between the empirical performance and the model
are most noticeable for Mobile and for News. In the first case, the decoded
video quality is either excellent (when all the I frames are received) or very
bad (when they all miss their decoding deadline), whereas the model always
predicts progressive degradations. In the second case, the mismatch is due to
the fact that the fit shown in Fig. 3.4 and Fig. 3.5 is not accurate for this
sequence. The fit can be improved by reducing the value chosen for L′.

The amount of over-provisioning depends on the playout deadline, on the
rate variations of the sequence, and on the bottleneck rate. We present, in the
following, an analysis of these effects.

Tighter playout deadlines increase the over-provisioning necessary for a
lossless transmission, in other words, effective capacity is reduced by the delay
constraint. For example, for a 375 kb/s bottleneck, the highest quality is
achieved for Mother & Daughter for 319 kb/s when the playout deadline is
500 ms and for 282 kb/s when the playout deadline is 250 ms. In the different
cases, this represents 85% and 75 % of the available throughput.

Instantaneous rate increases create queuing spikes at the bottleneck which
prevent very low-latency streaming. This explains why the over-provisioning is
most noticeable for the two sequences Foreman and Mother & Daughter. For

30 3 Streaming over Throughput-Limited Paths

sequences produced using rate control, where the sizes of each frame are kept
close to constant, it is possible to remove the need for over-provisioning. For
a bottleneck rate of 375 kb/s, constant bit rate sources can be supported up
to 97 % and 99 % of the available throughput for playout deadlines of 250 ms
and 500 ms, respectively. However, this performance improvement comes at
the cost of fluctuating quality.

For higher bottleneck rates, the amount of over-provisioning necessary is
reduced. This is illustrated in the differences between the results shown in
Fig. 3.6 and Fig. 3.7 for a playout deadline of 250 ms. For all the sequences
except Foreman and Mother & Daughter, the performance degradation is not
observable when the available throughput is 750 kb/s, whereas it is clearly
visible for all the sequences except Mobile when the available throughput is
375 kb/s. For Foreman the peak performance is observed when the rate is 67%
of the capacity, for the first experimental setup, and at 77% of the capacity,
for the second. For Mother & Daughter the peak performance is observed
when the rate is 74% of the capacity, for the first case, and at 76% of the
capacity, for the second. These results are consistent with the M/M/1 model
which predicts that for a given utilization of the link, average queuing delay
decreases when the bottleneck rate increases.

Additional results for this model can be found in [135] for an IPP... coding
structure. In [135], we also explain that longer groups of pictures make the
sequences more sensitive to losses. This increases κ and also increases the need
for over-provisioning. This is also the case for the coding structure we consider
in this chapter.

3.1 Video Encoding for Throughput-Limited Paths 31

100 150 200 250 300 350

24

26

28

30

32

34

36

38
Container

Rate (kb/s)

P
S

N
R

 (
dB

)

Experiment T=0.25s
Experiment T=0.5s
Model T=0.25s
Model T=0.5s

100 150 200 250 300 350
27

28

29

30

31

32

33

34

35
Foreman

Rate (kb/s)

P
S

N
R

 (
dB

)

Experiment T=0.25s
Experiment T=0.5s
Model T=0.25s
Model T=0.5s

100 150 200 250 300 350
10

12

14

16

18

20

22

24

26

28
Mobile

Rate (kb/s)

P
S

N
R

 (
dB

)

Experiment T=0.25s
Experiment T=0.5s
Model T=0.25s
Model T=0.5s

50 100 150 200 250 300 350
30

32

34

36

38

40

42

Mother and Daughter

Rate (kb/s)

P
S

N
R

 (
dB

)

Experiment T=0.25s
Experiment T=0.5s
Model T=0.25s
Model T=0.5s

100 150 200 250 300 350
26

28

30

32

34

36

38

40
News

Rate (kb/s)

P
S

N
R

 (
dB

)

Experiment T=0.25s
Experiment T=0.5s
Model T=0.25s
Model T=0.5s

100 150 200 250 300 350
28

29

30

31

32

33

34

35

36

37
Salesman

Rate (kb/s)

P
S

N
R

 (
dB

)

Experiment T=0.25s
Experiment T=0.5s
Model T=0.25s
Model T=0.5s

Fig. 3.6. Comparison of the rate-distortion model to empirical data for different
playout deadlines. Results shown for 6 sequences. Due to cross traffic, the maximum
possible for the video stream is 375 kb/s. Beyond this rate the bottleneck queue
grows without bounds.

32 3 Streaming over Throughput-Limited Paths

100 200 300 400 500 600 700

25

30

35

40

45

Container

Rate (kb/s)

P
S

N
R

 (
dB

)

Experiment T=0.15s
Experiment T=0.25s
Model T=0.15s
Model T=0.25s

100 200 300 400 500 600 700

28

30

32

34

36

38

40
Foreman

Rate (kb/s)

P
S

N
R

 (
dB

)

Experiment T=0.15s
Experiment T=0.25s
Model T=0.15s
Model T=0.25s

100 200 300 400 500 600 700

16

18

20

22

24

26

28

30

32

34

36

Mobile

Rate (kb/s)

P
S

N
R

 (
dB

)

Experiment T=0.15s
Experiment T=0.25s
Model T=0.15s
Model T=0.25s

100 200 300 400 500 600 700
30

32

34

36

38

40

42

44

46

48

50

52
Mother and Daughter

Rate (kb/s)

P
S

N
R

 (
dB

)

Experiment T=0.15s
Experiment T=0.25s
Model T=0.15s
Model T=0.25s

100 200 300 400 500 600 700

30

32

34

36

38

40

42

44

46

48

50
News

Rate (kb/s)

P
S

N
R

 (
dB

)

Experiment T=0.15s
Experiment T=0.25s
Model T=0.15s
Model T=0.25s

100 200 300 400 500 600 700

30

32

34

36

38

40

42

44

46

48
Salesman

Rate (kb/s)

P
S

N
R

 (
dB

)

Experiment T=0.15s
Experiment T=0.25s
Model T=0.15s
Model T=0.25s

Fig. 3.7. Comparison of the rate-distortion model to empirical data for different
playout deadlines. Results shown for 6 sequences. Due to cross traffic, the maximum
possible for the video stream is 750 kb/s. Beyond this rate the bottleneck queue
grows without bounds. For the sequences Container and Mobile the decoded video
quality for the highest encoding rate is respectively 19 dB and 11 dB. It is not
represented on the graphs.

3.2 Congestion-Distortion Optimized Scheduling 33

3.2 Congestion-Distortion Optimized Scheduling

The analysis and the model presented in the first part of this chapter show
the importance of taking into account the impact of a media stream on the
network in terms of congestion. The congestion created by a stream manifests
itself as the additional queuing delay which appears on the links carrying
its traffic. This effect is not adequately captured when the packet scheduler
controls average rate, as in [77, 79, 80]. The same average rate can give rise to
vastly different congestion, depending on bottleneck rate and the burstiness
of the transmitted stream. This problem has motivated us to develop a new
media scheduler based on congestion control instead of rate control. We refer
to this new approach as congestion-distortion optimized packet scheduling, or
CoDiO.

Different from RaDiO, CoDiO determines which packets to send, and
when, to maximize decoded video quality while limiting network congestion.
In this section, we analyze the performance of congestion-distortion optimized
scheduling for low-latency streaming over a throughput-limited network and
compare it to other techniques. We also present a low-complexity algorithm
which achieves nearly optimal performance. To our knowledge, and with the
exception of our own prior work [201] and [202], the experimental results in
this section are the first comparison of congestion-distortion optimized and
rate-distortion optimized schedulers.

In Sec. 3.2.1, we describe a time-varying channel model which reflects the
impact of a sender on the end-to-end delay of a throughput-limited path. This
model takes into account the state of the bottleneck queue and is helpful to
estimate the probability that a video packet meets its playout deadline. In
Sec. 3.2.2, we explain how to evaluate the congestion created in the network
and the expected decoded distortion, given a particular schedule indicating
which packets to send, and when, over a finite time horizon. The search space
for different possible schedules of a set of packets grows exponentially with
the length of the time horizon considered and with the number of packets.
This makes it impractical to exhaustively search for an efficient schedule.
Besides, coupling between the transmission schedules of different packets pre-
vents scheduling each media packet independently of the others. We present
the idea of a randomized schedule search to determine an efficient schedule for
the packets of a media stream in Sec. 3.2.3. In Sec. 3.2.4, we also describe a low
complexity CoDiO scheduler, which does not require the computational com-
plexity of CoDiO, and adaptively determines which is the next best packet to
send to optimize performance. In Sec. 3.2.5, we analyze experimental results
which highlight the advantages of CoDiO for low-latency streaming. We also
study the benefits of using a congestion-distortion tradeoff instead of a rate-
distortion tradeoff. As congestion is an increasing function of the transmission
rate, a CoDiO scheduler should achieve similar rate-distortion performance as
a RaDiO scheduler. In addition, it is expected to shape traffic to reduce delay
over bottleneck links.

34 3 Streaming over Throughput-Limited Paths

Results shown in this chapter are for video streams, transmitted over a
wired network, compressed using the encoding structure depicted in Fig. 3.1.
The concept of CoDiO scheduling, however, is more general and applies to
any type of media encoding and any throughput-limited network. Results for
CoDiO scheduling of a layered video representation were presented in [201],
and CoDiO scheduling in a time-varying wireless ad hoc network was analyzed
in [202].

3.2.1 Channel Model

The channel model we consider is motivated by typical video streaming ses-
sions between media servers and clients, connected to the Internet by a
throughput-limited connection susceptible to losses. We consider the route
between the video server and the client as a succession of high-bandwidth
links, shared by many users, and of a bottleneck last-hop link. The high-
bandwidth links are assumed to be lossless. Losses may occur, however, after
the bottleneck link. These losses are assumed to be independent, and identi-
cally distributed. Different studies have shown that the delay over a multi-hop
network path can be well approximated by a shifted gamma distribution, in
the absence of congestion, [203, 204]. This is the distribution of a sum of shifted
exponential variables and is in agreement with the classic M/M/1 model of-
ten used to model the distribution of the service time over each network hop
[205]. Therefore, in the rest of the chapter, the delay over each link of the first
portion of the path will be modeled as a random variable following a shifted
exponential distribution (where the shift represents the propagation delay).
The delay over the low-bandwidth last hop is determined by the capacity of
the link and the size of the queue. The resulting end-to-end delay between the
server and the client, as depicted in Fig. 3.8, follows a distribution resulting
from the convolution of different exponentials characterizing the delay over
each high-bandwidth links, and parameterized by a time-varying shift reflect-
ing the total propagation delay and the delay at the bottleneck. The latter
is a consequence of the varying size bottleneck queue, depicted in Fig. 3.9,
which can be estimated given the arrival times of packets at the bottleneck,
their sizes, and the capacity of the link denoted by C.

The available capacity of the bottleneck link may be estimated by trans-
mitting packets at successive intervals over the network as described, for ex-
ample, in [206]. For simplicity, we assume that the capacity of this link is
known at the sender, that the last hop is not shared with any other streams,
and that the bottleneck queue is empty before the streaming session begins.
In addition we also assume that the server has an accurate estimate of the
parameters of the distributions characterizing the high bandwidth links as in
[77, 79, 80]. Given this information and the history of past transmissions, the
server may estimate, at each time, a delay distribution, parameterized by the
size of the bottleneck queue, and, in turn, the probability that a packet will
arrive at the client by a certain time.

3.2 Congestion-Distortion Optimized Scheduling 35

Fig. 3.8. Channel model. The delay over each high bandwidth links is assumed to
be exponentially distributed and the delay over the last hop is determined by the
size of the bottleneck queue.

3.2.2 Evaluating a Schedule

We consider time to be slotted, and denote by tj successive transmission times,
by δt the length of the time interval between successive transmission times,
and by πi(tj) binary variables representing whether or not the transmission of
Packet i of size Bi is scheduled at time tj . This set of variables for the different
times {t1, ..., tk} is what we define as a schedule over k time slots and denote
by π. We define as the time horizon the time interval [t1, t1 + k · δt]. In the
following we explain how to evaluate the congestion and expected distortion
associated with a particular schedule.

Congestion Estimation

Expected end-to-end delay is our metric for congestion and we denote this
quantity by Δ. The properties of end-to-end delay make it well-suited to reflect
the impact of a sender operating over a throughput-limited network. Unlike
the transmission rate, congestion depends on the capacity of the network. As
an example, the congestion created on a T3 link when sending 100 kb/s will
be much lower than when the same traffic is sent over a 200 kb/s capacity link.
As a consequence, congestion also captures changes in the network conditions
which may arise when the number of senders competing for network resources
changes. The case of time-varying networks, however, studied in our previous
work, [202], will not be further addressed in this chapter. Another interesting
property of congestion is that it grows without bounds when the transmitted
rate approaches the capacity of the bottleneck link. This makes it suitable to
evaluate the cost of various transmission schedules and, if used appropriately,
should prevent a sender from overwhelming a bottleneck link.

For a given transmission schedule π, the rate output by the server may be
used to derive the size of the bottleneck queue as a function of time. This,
in turn, leads to an average value of end-to-end delay over the time horizon
considered. The transmitted rate at time tj is:

36 3 Streaming over Throughput-Limited Paths

R(tj) =
∑

i

πi(tj)Bi (3.11)

The additional information needed to derive the size of the bottleneck
queue is the time each packet reaches the bottleneck. We assume that delay
introduced by the high-bandwidth links can be considered constant and equal
to the mean of the actual delay distribution. This approximation is valid when
the occupancy of these links is low and the variance created by cross traffic is
limited. It is confirmed by the observation that the average utilization of the
backbone is well below 30% [207]. As losses occur only after the bottleneck
and that the bottleneck link is not shared, assuming the delay over the high-
bandwidth portion of the network to be equal to its expected value makes
the queuing process at the bottleneck deterministic. Therefore, knowing the
capacity of the bottleneck link, the transmitted rate as a function of time, and
the value of the average delay over the high-bandwidth links, the size of the
queue may easily be computed. A typical illustration of the size of the queue
as a function of time is shown in Fig. 3.9.

Fig. 3.9. Backlog at the bottleneck queue, as a function of time.

The corresponding average end-to-end delay is simply the average value
of this function taken over the time horizon considered and of a constant
term which reflects the average delay over the high bandwidth links. In our
experiments, rather than computing the exact integral of the function depicted
in Fig. 3.9, we evaluate its value every 3 ms, over the time horizon considered,
and use a Riemann sum to approximate the average end-to-end delay.

The slight inaccuracy resulting from assuming delay is constant over the
high-bandwidth portion of the network is represented in Fig. 3.10. Curves
show the size of the bottleneck queue, measured every millisecond or esti-
mated using the constant delay approximation. The results presented are for
a network path with two hops. The first hop is a high-bandwidth 47.5 Mb/s
T3 link which is filled with a 22 Mb/s flow of exponential cross traffic. When
generating cross traffic, the size of average traffic bursts is 30 kbytes. The
expected delay over this link is 59 ms: 50 ms of propagation delay and 9 ms of
queuing delay, on average. The second link is a low-bandwidth 400 kb/s link
which only carries video traffic. Video traffic is generated by sending video
frames of the Mother & Daughter sequence, 30 times per second, from the

3.2 Congestion-Distortion Optimized Scheduling 37

Fig. 3.10. Size of the bottleneck queue, as a function of time. Both the measured
queue size and the estimated queue size are represented. The estimated queue size is
obtained by considering the delay introduced over the high-bandwidth link is equal
to its statistical average.

server to the client. The video is compressed at 280 kb/s, with the encod-
ing structure shown in Fig. 3.1. Large packets are fragmented into MTU size
packets at the transport layer. As illustrated, the accuracy is satisfactory.

In terms of implementation, an additional technical detail should be noted.
At the end of the time horizon we consider, the bottleneck queue might not
be empty. Being oblivious to the bits which remain in the bottleneck queue
would favor transmission schedules where large frames are transmitted last.
To alleviate this problem, the area under the function represented in Fig. 3.9
is estimated by its Riemann sum up to the time where the queue is empty (this
is always possible as the schedules we consider span a limited time horizon).
The average congestion, however, is derived as the ratio of this area to the
length of the time horizon, k · δt.

Expected Video Distortion

The performance of a given schedule in terms of video quality can be evaluated
by estimating the distortion of a set of frames about to be decoded:

D(π) =
∑

f

Df (π) (3.12)

In (3.12), the distortion for the set of frames is expressed as the sum of the
distortion of each decoded frame of the set. This sum should be taken over all
the frames which can be affected by the arrival of the scheduled packets, and
should also account for any frame freeze. Therefore, when computing (3.12)

38 3 Streaming over Throughput-Limited Paths

at a given time, we consider the distortion of all the frames which have not
yet been played out and that are available for transmission at the sender,
according to the diagram shown in Fig. A.2.

The expected value of the distortion of Frame f , Df (π), is computed
as in [79]. Namely, we consider previous frame concealment, as described in
Appendix A, and assume that frames are frozen until the next decodable
frame. Hence, to capture the effect of packet loss on the video quality, only
a limited number of display outcomes need to be identified and associated
with different distortions. Let D(s, f) denote the distortion resulting from
substituting Frame s to Frame f . For the schedule π the expected distortion
of Frame f is expressed:

Df (π) =
∑
s≤f

D(s, f)Pr{s, f, π, I} (3.13)

Figure 3.11, shows the values of D(s, f) for different sequences. In general,
distortion increases as a function of |f−s|. However, due to oscillating motion,
for 4 of the 6 sequences this is not always the case for large values of |f − s|.
To avoid any artifact due to this effect, we replace D(s, f) with the distortion
resulting from showing a gray frame when |f − s| > 2GOP Length.

In (3.13), Pr{s, f, π, I} represents the probability that, for transmission
schedule π, Frame s is displayed instead of f . This assumes that Frame s, and
all the frames it depends on, are available at the receiver at the time Frame
f is due, and that no other frame, nearer to Frame f , and preceding it, is
decodable.

In our particular experimental set-up, Pr{s, f, π, I} incorporates the delay
distribution of the high-bandwidth portion of the network and the packet
loss probability after the bottleneck link. Pr{s, f, π, I} may be computed,
by combining the probabilities that different packets reach the client by their
playout deadlines. This value also depends on additional information available
at the server on the streaming session which is denoted by I. This includes
the playout latency and the encoding structure of the video stream, which
determines the different frame types of s and f and their place in a GOP. It
also includes information the sender has collected, through feedback, about
the reception status of packets transmitted in the past.

We consider, for simplicity, that the scheduler is limited to transmitting
entire frames rather than the different packets composing these frames. We
denote by εi(π, I) the probability that Frame i (i.e., Packet i) misses its decod-
ing deadline with a given schedule π and additional information, I, available
at the server. We will also use the notation εi for convenience. The derivation
of these probabilities is discussed in detail in [77, 79]. Due to the time-varying
bottleneck queue we consider, the derivation varies slightly in our case.

3.2 Congestion-Distortion Optimized Scheduling 39

Fig. 3.11. Mean squared error distortion D(s, f), for all combinations of s and f ,
where s is the frame displayed and f is the frame that should be displayed. Please
note that for the error-concealment method employed in this work f ≥ s, however
the case f < s is also shown in the graphs. The encoding rate for the different
sequences is as follows. Container: 244 kb/s, Foreman: 257 kb/s, Mobile: 237 kb/s,
Mother and Daughter: 282 kb/s, News: 319 kb/s, Salesman: 311 kb/s.

40 3 Streaming over Throughput-Limited Paths

To illustrate this difference, we derive the probability that Frame i, trans-
mitted at time tsi does not reach the receiver by its decoding deadline tdi

4.
This occurs when Frame i is lost (e.g., due to a transmission error after the
bottleneck link) or when it is received at time tri > tdi. In the derivation,
we denote the delay over the high-bandwidth portion of the network by the
random variable δ. We denote by tai the time at which Frame i reaches the
bottleneck queue. We also assume that, when π and I are known, the sched-
uler can accurately compute the size of the bottleneck queue Q(t), at any time
t, as seen in the previous section. The probability εi(π, I) is derived as follows:

εi(π, I) = Ploss + (1− Ploss)Prob{tri > tdi| π, I}, (3.14)

where, Prob{tri > tdi| π, I}
= Prob{tsi + δ + Q(tai) +

Bi

C
> tdi| π, I} (3.15)

= Prob{δ + Q(tsi + δ) > tdi − tsi − Bi

C
| π, I} (3.16)

In (3.14), we express εi(π, I) as the combination of random losses, of rate Ploss,
and of late losses. In (3.15), the delay of Packet i, is expressed as the sum of the
delay on the high-bandwidth portion of the network, δ, of the queuing delay
when the packet reaches the bottleneck queue, Q(tai), and of the transmission
time over the bottleneck, which depends on the size of Packet i, Bi and on
the throughput of the link, C. The probability of late losses, as expressed
in (3.16), only depends on the random variable δ and on the function Q,
which can be accurately computed given the history of transmissions preceding
that of Frame i, since the bottleneck link is not shared. As we assume the
random delay experienced by the different packets over the high-bandwidth
portion of the network to be independent and identically distributed, the
different {εk(π, I), k = 1 · · · n} are mutually independent. Please note that
the probabilities of loss (and especially of late loss) of different packets are
not independent in general. This property is a consequence of considering this
quantity conditioned on a policy π and on the history of past transmission I,
as well as a bottleneck reserved for these packets.

To simplify the computation of (3.16), we compute the late loss probability,
in practice, by making the following approximation:

Prob{tri > tdi| π, I} �
Prob{δ > tdi − tsi − Bi

C
− Q(tsi + E[δ])} (3.17)

In (3.17), we assume that Q(tsi + δ) can be replaced by Q(tsi + E[δ]),
where E[δ] is the expected value of δ, and includes propagation delay as well
4 A frame may, of course, be transmitted more than once, as analyzed in detail in

[77, 79]. This case does not provide any additional insight here.

3.2 Congestion-Distortion Optimized Scheduling 41

as queuing delay over the high-bandwidth links. This assumption is justified
when the variance of the delay over the high-bandwidth links is small.

Fig. 3.12. Encoding structure of a partial GOP containing I, P, and B frames. The
numbering reflects the display order of the pictures.

The general form of the expression of Pr{s, f, π, I} is intricate. However,
it is not particularly difficult to compute. As an illustration, for the encoding
structure shown in Fig. 3.12, we derive the probability that Frame 9 is shown
instead of Frame 11. Given the schedule π and the information I, we assume
the different probabilities {ε1, ..., ε13} have been computed and we consider
Frame 1 has been received and decoded correctly. The frames necessary to
decode Frame 9 are Frame 5 and Frame 9. In addition, Frame 10 and Frame 11
should not be decodable. This implies that either Frame 13 is not received or
that Frames 10 and 11 are both missing. Hence, the probability is:

Pr{9, 11, π, I} = (1 − ε5) · (1 − ε9) · (ε13 + (1 − ε13)ε10ε11). (3.18)

3.2.3 Randomized Schedule Search

In this section, we describe how to determine an efficient transmission schedule
for the packets of a video stream. For a set of n packets and for k time slots,
the number of possible schedules is 2nk, if we allow retransmissions, since at
each time slot any of the packets can potentially be sent.

In [77], an algorithm called “iterative sensitivity adjustment” is presented
to overcome the problem of the exponentially growing search space, by op-
timizing the transmission policy for one packet at a time, while fixing the
schedule for the other packets. This method is suitable when the probability
of a successful transmission is independent of the schedules of other packets,
as, for example, in [79, 112]. In our case, however, each packet transmission
affects the arrival times of successive packets. As a result, iterative sensitivity
adjustment and similar convex optimization methods would often not con-
verge to the desired solution.

We propose, as an alternative, a randomized search algorithm to determine
an efficient schedule. The algorithm is simple: a schedule for the different
video packets considered is selected at random and evaluated in terms of its
expected Lagrangian cost D(π)+λΔ(π), according to the procedure described
in Sec. 3.2.2; if the schedule outperforms all other schedules considered so far,
it becomes the new reference schedule; if not, it is discarded. After a given

42 3 Streaming over Throughput-Limited Paths

number of iterations, packets are transmitted, at the beginning of the present
time slot, according to the reference schedule. Schedules are re-optimized at
each time slot, as in [77, 79, 80, 81].

We initialize the algorithm by evaluating the cost of several heuristic sched-
ules. One of the starting points is the tail of the schedule chosen for the
previous transmission opportunity. The other heuristic schedules we consider
are:

• the empty schedule;
• all the schedules where only one packet is sent in the present time slot,

and no other packet is sent;
• a sequential schedule, where packets which have not been transmitted yet

are sent sequentially, following their frame number; to avoid congestion,
successive packets are mapped to the next time slot during which the
bottleneck queue is expected to become empty; if this time slot is beyond
the time horizon considered, packets are not transmitted.

Interestingly, despite the fact that simple rules can often be used to deter-
mine which packets should be sent, the specific order of transmission indicated
by the randomized algorithm is usually non-trivial and yields lower congestion
than that of heuristic starting points.

As an illustration, we show in Fig. 3.13 the cost in terms of expected mean
squared error (MSE) distortion and of average queuing delay of 300 different
schedules for a set of 10 frames sent over the two-hop network path described
in Sec. 3.2.2. The first hop is a high-bandwidth 47.5 Mb/s T3 link which is
filled with a 22 Mb/s flow of exponential cross traffic. The second link is a
low-bandwidth 400 kb/s link which only carries video traffic.

The frame numbers and their type are depicted in Fig. 3.14. The playout
deadline is 600 ms. The experiment is run at the decoding time of Frame
144. The diagram shown in Fig. A.2, indicates that, at this time, and for
this playout deadline, frames 145 to 164 are available at the sender. Frames
145 to 154 have already been acknowledged by the receiver, therefore they
are no longer considered. None of the frames shown in Fig. 3.14 have been
transmitted yet. When the experiment is run, the queue at the bottleneck
is empty. We consider transmissions over the next 132 ms. This interval is
divided into 4 equal time slots, at the beginning of each time slot, CoDiO
may select one or several frames to transmit.

We denote by Ndu the number of packets (i.e., frames) which the scheduler
considers for transmission, and by Numts the number of time slots. We denote
by pt the number of packets we wish to transmit on average in a time slot
(please note that this number is not restricted to be an integer), and by rand,
a random variable, uniformly distributed between 0 and 1. CoDiO determines
the slot at which each data unit is transmitted as follows:

3.2 Congestion-Distortion Optimized Scheduling 43

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

200

400

600

800

1000

1200

Average queueing delay (s)

D
is

to
rt

io
n

(M
S

E
)

Container

0 0.05 0.1 0.15 0.2
0

500

1000

1500

2000

2500

Average queueing delay (s)

D
is

to
rt

io
n

(M
S

E
)

Foreman

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

500

1000

1500

2000

2500

3000

3500

Average queueing delay (s)

D
is

to
rt

io
n

(M
S

E
)

Mobile

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

100

200

300

400

500

600

700

Average queueing delay (s)

D
is

to
rt

io
n

(M
S

E
)

Mother & Daughter

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

200

400

600

800

1000

1200

1400

1600

Average queueing delay (s)

D
is

to
rt

io
n

(M
S

E
)

News

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

200

400

600

800

1000

1200

1400

1600

1800

Average queueing delay (s)

D
is

to
rt

io
n

(M
S

E
)

Salesman

Fig. 3.13. Congestion-distortion performance of different schedules. The encod-
ing rate for the different sequences is as follows. Container: 244 kb/s, Foreman:
257 kb/s, Mobile: 237 kb/s, Mother and Daughter: 244 kb/s, News: 319 kb/s, Sales-
man: 311 kb/s.

44 3 Streaming over Throughput-Limited Paths

Fig. 3.14. Encoding structure of the frames used in the example illustrating the
random schedule search.

slot =�rand · Ndu

pt
�, if rand ≤ pt

Numts

Ndu

slot =∞, otherwise.

An infinite time slot indicates that the packet is not transmitted. This simple
rule allows to schedule pt packets per time slot, and to uniformly distribute
them over time slots. In the experiments presented in this chapter, we fix an
average transmission rate of 1.2 frames per time slot.

As shown in Fig. 3.13, the different schedules considered vary widely both
in distortion and congestion. The points in the graphs appear in clusters. The
cluster in the top left corner of the graphs characterizes schedules where no
I or P frames are transmitted. They lead to highest distortion as none of the
frames shown in Fig. 3.14 are decodable, and to low congestion, as the B
frames transmitted are relatively small. For most of the sequences, there is
another cluster in the left-most portion of the graphs. This cluster represents
the performance of schedules where Frame 156 is transmitted, but not the I
frame. The cluster is clearly separated when the size difference between I and
P frames is larger. For this particular set of frames, schedules with low dis-
tortions are arrangements in which frames 156, 160, and 164 are transmitted,
as well as a varying number of the other frames shown in Fig. 3.14. As an
example, we compare, in Fig. 3.15, the three schedules for which distortion is
smallest, for the sequence Mother and Daughter. As illustrated, congestion is
reduced when the transmission of the larger frames is spaced out.

To differentiate between the best performing schedules, congestion is a bet-
ter suited metric than rate. For the schedules with lowest distortion, the same
set of I and P frames are transmitted, leading to similar rates. However, de-
pending on the transmission order, the resulting congestion may vary widely.
This is illustrated by the performance of the schedules in terms of distor-
tion, congestion, and rate represented in figures 3.13 and 3.16. The difference
between rate and congestion is particularly pronounced for the schedules lead-
ing to lower distortion for the sequence Mobile. For the rate-distortion plot in
Fig. 3.16, these schedules seem to form a rate-distortion curve, reflecting that
the points representing several different schedules are superimposed, whereas
the congestion-distortion plot in Fig. 3.13 clearly shows a difference in the
congestion of these schedules.

For the examples illustrated above, choosing the scheduler with least con-
gestion rather than the one with highest congestion, among the minimal dis-
tortion schedules, leads to a congestion reduction of between 25% and 50%,

3.2 Congestion-Distortion Optimized Scheduling 45

Fig. 3.15. Three schedule examples for the sequence Mother & Daughter, and their
performance in terms of MSE and queuing delay. The size of the frames is not drawn
to scale.

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

3500

Rate (kb)

D
is

to
rt

io
n

(M
S

E
)

Mobile

Fig. 3.16. Rate-distortion performance of different schedules for the sequence Mo-
bile. The particular schedules are the same as those represented in Fig. 3.13. Rate
is obtained by summing the bits transmitted within the time horizon.

depending on the sequence. This is achieved by picking a transmission or-
der which reduces the occurrence of delay spikes at the bottleneck queue.
We expect the same approximate range of performance improvement over a
scheduler such as RaDiO which is oblivious to the impact it may have on
queuing delay. Please note that as the average encoding rate of the sequences
approaches capacity the range spanned by congestion increases, and so does
the performance improvement.

3.2.4 CoDiO Light

The algorithm described in the previous section is naturally scalable, as the
number of schedules considered can be reduced, at the expense of less effi-
cient solutions. When the number of schedules considered falls below a certain

46 3 Streaming over Throughput-Limited Paths

threshold (around 50 for the previous examples), the quality is not satisfying.
However, it is possible to reduce computational complexity by another order
of magnitude. This is achieved by observing that, in the absence of cross traf-
fic sharing the bottleneck, it is never advantageous to have multiple packets
in the bottleneck queue at the same time. In terms of congestion, having the
next packet wait in the bottleneck queue, rather than at the client creates
unnecessary queuing delay. In terms of distortion, as the bottleneck queue is
not shared with cross traffic, delaying the packet transmission will not alter
its chances of timely arrival significantly, as long it is sent early enough. In
addition, during the time it waits for the previous packet to clear the bottle-
neck, the client may receive new acknowledgment packets from the receiver,
which may change the information I, used to compute expected distortion,
and change the sequence of optimal transmissions. For the CoDiO scheduler,
described in the previous sections, multiple transmissions sometimes occur
back-to-back in the same time slot. This mostly depends on the parameter
pt, which controls the average number of packets sent per time slot. For time
slotted schedules for which the intervals δt between different transmission op-
portunities is long enough to transmit more than one frame (this is typically
the case for B frames), when several packets are yet to be transmitted, CoDiO
will schedule several packets in the same time slot, rather than leaving the
bottleneck queue empty for part of the time slot, as this may reduce expected
distortion.

The low-complexity scheduler, CoDiO light, determines iteratively the best
next packet to send in terms of the Lagrangian cost D+λΔ. This is carried out
by comparing all the schedules where only one packet is sent in the present
time slot, and no other packet is sent. Note that these schedules are also
considered by CoDiO as heuristic starting points. The best of these schedules
is determined by evaluating their cost, based on the methodology described
in Sec. 3.2.2. A packet is sent when one of these schedules outperforms the
empty schedule.

The best-next-packet selection is repeated after waiting for the time needed
for the last packet to drain from the bottleneck queue. For Packet i, of size
Bi, this time is simply Bi/C, where C is the capacity of the bottleneck.
Please note, that due to propagation delay, a packet will actually be sent
while the previous packet is still in the bottleneck queue. However, the new
packet is expected to arrive at the bottleneck when the queue becomes empty.
As an additional technical detail, when the empty schedule performs best,
CoDiO light is run again after 5 ms. The computational load of CoDiO light
is typically only 1/100th of that required for CoDiO.

The adaptive spacing of successive transmissions is essential for the per-
formance of CoDiO light. We also considered regular time slots, spaced every
33 ms, similar to CoDiO. Experimental results were not satisfying. The adap-
tive spacing, however, leads to excellent performance, as will be shown in
Sec. 3.2.5.

3.2 Congestion-Distortion Optimized Scheduling 47

3.2.5 Experimental Results

Experimental Setup

The different schedulers are evaluated by simulating the transmission of video
streams in the network simulator ns-2. Results presented are for a low-latency
streaming scenario where a sender transmits video frames to the receiver which
sends ACKs back for each frame it has received. We consider a network path
with two hops, as described in Sec. 3.2.2. The first hop is a lossless high-
bandwidth duplex 47.5 Mb/s T3 link which is filled with a 22 Mb/s flow of
exponential cross traffic. When generating cross traffic, the size of average
traffic bursts is 30 kbytes. The expected delay over this link is 59 ms: 50 ms of
propagation delay and 9 ms of queuing delay, on average. The second link is a
lossy low-bandwidth duplex 400 kb/s link which only carries video traffic. We
consider a fixed packet loss rate of 2% over this link. The propagation delay
over the link is 2 ms. We assume that the scheduler has perfect knowledge
of the delay distribution over the high-bandwidth links, of the bottleneck
capacity, and of the packet loss rate.

We let CoDiO and CoDiO light consider transmissions of entire frames
only, and large video packets are fragmented into MTU size packets at the
transport layer. ACKs are sent when all the packets of a frame have been
received. When a frame has been transmitted, it is no longer considered for
transmission until the probability that it has been lost reaches 95%. This oc-
curs, in the absence of an ACK, soon after the expected reception time of
the ACK. For CoDiO scheduling, we consider schedules which cover the next
132 ms. This interval is divided into 4 equal time slots, at the beginning of
each time slot, CoDiO may select one or several frames to transmit. Trans-
mission for the present time slot are determined by choosing the best out of
100 schedules. Schedules are re-optimized at each time slot. The maximum
average number of frames sent per time slot is set to pt = 1.2, as in the experi-
ments shown in Sec. 3.2.35. If a schedule indicates more than one transmission
in a time slot, these occur back-to-back, following the sequence number of the
packets. For CoDiO light, the spacing between successive transmissions de-
pends on the size of the previous frame sent, as described in Sec. 3.2.4.

Results are presented for six video sequences compressed using the coding
structure depicted in Fig. 3.1. The encoding rate for the different sequences
is as follows. The encoding rate for the different sequences is as follows, Con-
tainer: 327 kb/s, Foreman: 290 kb/s, Mobile: 342 kb/s, Mother & Daughter:
319 kb/s, News: 358 kb/s, Salesman: 364 kb/s. Sequences are looped 40 times
when collecting experimental results. When a packet arrives at the receiver
after its playout deadline, the frame it belongs to is discarded as if it were
lost. In this case, the frame is concealed using previous frame concealment and

5 Please note that this only influences the way CoDiO selects schedules and does
not indicate that 20% of the frames are retransmitted, as there is no unnecessary
transmission or retransmission.

48 3 Streaming over Throughput-Limited Paths

frozen until the next decodable frame, as described in detail in Appendix A.
The results collected are the sender’s transmission rate, the decoded video
quality, measured in PSNR and computed as explained in Appendix A, and
the congestion (i.e., the average end-to-end delay). The latter is computed by
sending 1 byte probe messages every 20 ms from the sender to the receiver6.
The average delay of these messages during the experiment indicates the level
of congestion.

Determining an Optimal λ

Values for the parameter λ are determined experimentally for each of the se-
quences and are indicated in Tab. 3.1. This is done by running the CoDiO
scheduler for different values of λ with a playout deadline of 450 ms, and
choosing the one which maximizes the decoded video quality. In practice, the
limiting factor in setting λ is to pick a small enough value so that all the I
frames of a sequence get transmitted. Namely, the Lagrangian cost D + λΔ
when an I frame is transmitted should be smaller than the average distortion
resulting from concealing this I frame. As the level of activity of the sequences
varies vastly from sequence to sequence and leads to large differences in the
efficiency of error-concealment, and as the sizes of I frames also vary signifi-
cantly, this leads to λ values which span several orders of magnitude, depend-
ing on the sequence. For these values of λ, the weight given to distortion is
high, compared to congestion, when computing the Lagrangian cost D + λΔ.
Interestingly, these settings lead to far lower distortion than λ = 0. This seems
to contradict the notion that CoDiO performs a trade-off between distortion
D and congestion Δ. However, CoDiO considers the Lagrangian cost function
D + λΔ with a limited time horizon and expected distortion is computed for
the set of frames available at the sender for transmission. Therefore, if λ = 0,
the best decision is to send all frames at once, regardless of the congestion this
causes. If at the next transmission time, an I frame enters the set of frames
considered by the scheduler for transmission, the time it will have to reach
the receiver might be smaller than the queuing delay created by the previous
transmissions. Limiting the congestion by setting λ to the values indicated in
Tab. 3.1 mitigates this problem.

Automatic Repeat reQuest (ARQ) Scheduler

In the experiments presented in the next section, we compare the performance
of CoDiO and CoDiO light to an ARQ scheduler which sends video frames,
as soon as they are made available to the sender, according to the process
depicted in Fig. A.2, and keeps them in its buffer as long as they are not past
due. When the scheduler receives an ACK for Video Frame n, it is removed

6 While it is not possible to send 1 byte packets on a real network, this is possible
in the network simulator.

3.2 Congestion-Distortion Optimized Scheduling 49

Table 3.1. Values of λ for CoDiO and CoDiO light, for different sequences, expressed
in s−1.

Sequence λ

Container 7
Foreman 200
Mobile 15

Mother & Daughter 1
News 5

Salesman 1

from the buffer. If this ACK is received out of order, the scheduler retransmits
all the frames which were transmitted before Frame n and that have remained
in its buffer, as these are packets that should have been acknowledged before
Frame n.

CoDiO vs. RaDiO

We compare the performance of CoDiO vs. RaDiO in terms of distortion,
rate and congestion in Fig. 3.17, 3.18 and 3.19. For RaDiO, we follow exactly
the procedure used for CoDiO except that we evaluate different schedules
in terms of their expected Lagrangian cost D(π) + λR(π). Values for the
parameter λ are determined experimentally for each of the 6 sequences, in the
same way as they were for CoDiO. They are indicated in Tab. 3.2. The value
of R is obtained by computing the average transmitted rate over the time
horizon considered. All the other parameters and algorithms remain the same
(time horizon, schedule length, randomized search to determine an efficient
schedule, etc.). In particular, we use the same time-varying delay distribution
to estimate the probability that packets are received by a given deadline.
Therefore, the impact of the sender on the channel is included through the
expected distortion estimation carried out when running RaDiO.

Table 3.2. Values of λ for RaDiO, for different sequences, expressed in s/Mb.

Sequence λ

Container 10
Foreman 1250
Mobile 10

Mother & Daughter 1
News 1

Salesman 1

50 3 Streaming over Throughput-Limited Paths

The results in terms of rate and distortion for the two schedulers are
almost identical as illustrated in Fig. 3.17 and 3.18. However, the curves in
Fig. 3.19 show the congestion created by CoDiO is lower than that created by
RaDiO. Depending on the sequence, congestion is reduced by 13% to 28%. As
congestion (defined as the average end-to-end delay) includes 52 ms of delay
propagation, the queuing delay is actually reduced by 20% to 40%.

For the values of λ chosen for RaDiO, the weight given to distortion is high,
compared to rate, when computing the Lagrangian cost D + λR. Therefore,
both RaDiO and CoDiO are expected to choose schedules which minimize
distortion. In the experiments we present, when the playout deadline is above
0.7 s, both RaDiO and CoDiO achieve almost optimal performance: they
transmit all the frames to the receiver and retransmit the ones that are lost
due to random losses. In this case, their transmission rate is slightly above
the rate at which the sequence is encoded, due to retransmissions. When the
playout deadline is between 0.3 s and 0.7 s, the performance of both schedulers
slightly drops compared to the maximum performance. This drop is due to I
frame retransmissions. Indeed, when an I frame is dropped, the time between
which it is made available to the sender and the time at which it will reach
the receiver after being retransmitted is mostly between 0.3 s and 0.7 s, as
illustrated in Tab. 3.3. Hence, when an I frame is lost, both RaDiO and CoDiO
will not be able to retransmit it, after the loss is detected, the rest of the GOP
will be dropped which explains the corresponding slight rate drop. In this case,
it is also expected that the rate and distortion of both CoDiO and RaDiO be
the same. The sharp drop-off corresponds to the transmission time of the
largest I frame in the sequence. Beyond this critical point, the performance of
any scheduler would decrease sharply.

Table 3.3. Size of the smallest and largest I frame (in bits), and time (in seconds)
needed to transmit the smallest I frame (Time 1) and the largest I frame (Time 2),
assuming they are lost once. We denote the size of an I frame by B, the channel
capacity by C and the propagation delay by tp. Time 1 (or Time 2) is then 2(B

C
+

tp)+ tp, illustrating that in addition to transmitting the I frame twice, the scheduler
also waits enough time to notice the absence of an ACK.

Sequence Smallest I frame Time 1 Largest I frame Time 2

Container 96400 bit 0.69 s 100000 bit 0.71 s
Foreman 31600 bit 0.37 s 85900 bit 0.64 s
Mobile 91600 bit 0.67 s 103500 bit 0.74 s

Mother & Daughter 60400 bit 0.51 s 67300 bit 0.55 s
News 73100 bit 0.58 s 78400 bit 0.60 s

Salesman 96500 bit 0.69 s 99300 bit 0.70 s

3.2 Congestion-Distortion Optimized Scheduling 51

Despite the similar rate-distortion performance we have just analyzed, the
congestion created by CoDiO is lower than that of RaDiO. This difference
is due to the fact that RaDiO is oblivious to the burstiness of the bitstream
sent over the bottleneck link, as long as queuing does not create excessive
delays causing some packets to arrive late. This is a consequence of the rate
metric which does not adequately capture the impact of the order in which
packets are transmitted over the network. Indeed, RaDiO will not differen-
tiate between several schedules achieving equal rate-distortion performance,
whereas CoDiO picks the one with least congestion. This is illustrated by the
difference between Fig. 3.13 and Fig. 3.16 which was highlighted in Sec. 3.2.3.

This effect is further analyzed in Fig. 3.20, which shows the variation of
end-to-end delay as a function of time. The trace corresponds to the 10 first
seconds of the experiment analyzed in Fig. 3.17, Fig. 3.18, and Fig. 3.19 for a
playout of 550 ms. Please note that end-to-end delay includes 52 ms of prop-
agation delay. Also, probe packets which serve to measure end-to-end delay,
are only sent after the first second which explains why there are no results for
the first second. The curves shown in the figure allow to track the size of the
bottleneck queue. Delay spikes every 0.5 s are due to the presence of I frames
at the beginning of each GOP. In some cases, I frame retransmissions can
be seen, as, for example, for the sequence Mother & Daughter at Time 1.8 s
for CoDiO, and at time 7.5 s for RaDiO. The average rate for this particular
period of time is also reported in the caption of Fig. 3.20, to ensure that the
differences in performance between the two schedulers is not only caused by
differences in terms of rate. The figure illustrates that CoDiO does not let
packets accumulate in the bottleneck queue. This is particularly significant
for Foreman, News, and Mother & Daughter, where the transmitted rate ac-
tually exceeds that of RaDiO, even though congestion is lower. For Mobile
and Container, P frames and B frames are very small compared to I frames,
and no real packet accumulation can be observed (except when an I frame
is retransmitted). This is corroborated by the instantaneous rate variations
shown in Appendix A, which illustrate that traffic patterns are very regular
for these two sequences. This explains why smaller performance differences
are observed for these sequences in Fig. 3.19.

CoDiO, CoDiO Light, and ARQ

Figures 3.21, 3.22 and 3.23, illustrate the performance, in terms of PSNR, rate
and congestion of CoDiO and CoDiO light compared to the ARQ scheduler.
Results are shown for different playout deadlines. The value of λ for CoDiO
and CoDiO light is indicated in Tab. 3.1. As shown in Fig. 3.21, CoDiO
and CoDiO light clearly outperform the ARQ scheduler. Depending on the
sequences and on the playout deadline, the gap between the schedulers ranges
from 1 dB to 4 dB in terms of video quality, and the congestion reduction
ranges from 25% up to 75%.

52 3 Streaming over Throughput-Limited Paths

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

26

28

30

32

34

36

38

Playout deadline (s)

P
S

N
R

 (
dB

)
Container

CoDiO
RaDiO

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
25

26

27

28

29

30

31

32

33

34

35

Playout deadline (s)

P
S

N
R

 (
dB

)

Foreman

CoDiO
RaDiO

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
16

18

20

22

24

26

28

Playout deadline (s)

P
S

N
R

 (
dB

)

Mobile

CoDiO
RaDiO

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
25

30

35

40

45

Playout deadline (s)

P
S

N
R

 (
dB

)

Mother and Daughter

CoDiO
RaDiO

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

22

24

26

28

30

32

34

36

38

40

Playout deadline (s)

P
S

N
R

 (
dB

)

News

CoDiO
RaDiO

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
25

30

35

40

Playout deadline (s)

P
S

N
R

 (
dB

)

Salesman

CoDiO
RaDiO

Fig. 3.17. Performance of CoDiO in terms of video quality compared to RaDiO for
different playout deadlines.

The performance gap between CoDiO (or CoDiO light) and ARQ is caused
by the larger congestion created by the ARQ scheduler on the bottleneck link.
Sometimes, the transmitted rate of ARQ even exceeds capacity, which leads
to very bad performance. This is due to the fact that ARQ always transmits
all the packets of the video stream, and keeps retransmitting lost packets as
long as they are not past due (i.e., as long as their playout deadline has not
gone by). As ARQ does not use a model for the delay between the sender and

3.2 Congestion-Distortion Optimized Scheduling 53

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

400

450

500

Playout deadline (s)

T
ra

ns
m

itt
ed

 r
at

e
(k

b/
s)

Container

CoDiO
RaDiO

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

400

450

500

Playout deadline (s)

T
ra

ns
m

itt
ed

 r
at

e
(k

b/
s)

Foreman

CoDiO
RaDiO

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

400

450

500

Playout deadline (s)

T
ra

ns
m

itt
ed

 r
at

e
(k

b/
s)

Mobile

CoDiO
RaDiO

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

400

450

500

Playout deadline (s)

T
ra

ns
m

itt
ed

 r
at

e
(k

b/
s)

Mother and Daughter

CoDiO
RaDiO

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

400

450

500

Playout deadline (s)

T
ra

ns
m

itt
ed

 r
at

e
(k

b/
s)

News

CoDiO
RaDiO

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

400

450

500

Playout deadline (s)

T
ra

ns
m

itt
ed

 r
at

e
(k

b/
s)

Salesman

CoDiO
RaDiO

Fig. 3.18. Performance of CoDiO in terms of rate compared to RaDiO for different
playout deadlines.

the receiver, some of these retransmissions are wasted. These unnecessary
transmissions increase congestion which in turn increases the occurrence of
late losses. CoDiO or CoDiO light, on the other hand, do not send packets
which will not meet their playout deadline. For shorter playout deadlines (i.e.,
less than 0.7 s), this results in lower transmission rates, lower congestion, and
allows packets which do have time to meet their playout deadline and which
will improve the video quality to reach the receiver. The performance gap is
larger when the transmitted rate approaches capacity, due to the large growth

54 3 Streaming over Throughput-Limited Paths

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50

100

150

200

250

300

350

Playout deadline (s)

C
on

ge
st

io
n

(m
s)

Container

CoDiO
RaDiO

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50

100

150

200

Playout deadline (s)

C
on

ge
st

io
n

(m
s)

Foreman

CoDiO
RaDiO

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50

100

150

200

250

300

Playout deadline (s)

C
on

ge
st

io
n

(m
s)

Mobile

CoDiO
RaDiO

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50

100

150

200

250

Playout deadline (s)

C
on

ge
st

io
n

(m
s)

Mother and Daughter

CoDiO
RaDiO

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

60

80

100

120

140

160

180

200

220

240

260

Playout deadline (s)

C
on

ge
st

io
n

(m
s)

News

CoDiO
RaDiO

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50

100

150

200

250

Playout deadline (s)

C
on

ge
st

io
n

(m
s)

Salesman

CoDiO
RaDiO

Fig. 3.19. Performance of CoDiO in terms of congestion compared to RaDiO for
different playout deadlines. Congestion is defined as the average end-to-end delay
and includes 52 ms of propagation delay.

3.2 Congestion-Distortion Optimized Scheduling 55

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (s)

E
nd

−
to

−
E

nd
 D

el
ay

 (
s)

Container

RaDiO
CoDiO

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (s)

E
nd

−
to

−
E

nd
 D

el
ay

 (
s)

Foreman

RaDiO
CoDiO

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (s)

E
nd

−
to

−
E

nd
 D

el
ay

 (
s)

Mobile

RaDiO
CoDiO

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (s)

E
nd

−
to

−
E

nd
 D

el
ay

 (
s)

Mother and Daughter

RaDiO
CoDiO

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (s)

E
nd

−
to

−
E

nd
 D

el
ay

 (
s)

News

RaDiO
CoDiO

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (s)

E
nd

−
to

−
E

nd
 D

el
ay

 (
s)

Salesman

RaDiO
CoDiO

Fig. 3.20. End-to-end delay for CoDiO and RaDiO schedulers. The average rates for
this period for CoDiO and RaDiO are as follows. For CoDiO, Container: 327 kb/s,
Foreman: 315 kb/s, Mobile: 347 kb/s, Mother & Daughter: 343 kb/s, News: 366 kb/s,
Salesman: 349 kb/s. For RaDiO, Container: 324 kb/s, Foreman: 306 kb/s, Mobile:
348 kb/s, Mother & Daughter: 333 kb/s, News: 374 kb/s, Salesman: 364 kb/s.

56 3 Streaming over Throughput-Limited Paths

of the bottleneck queue caused by ARQ. The performance gap also increases,
when the playout deadline decreases, as in this case, the absence of congestion
is crucial.

The figures also allow to compare the performance of CoDiO and CoDiO
light. With the exception of congestion, which is lower for CoDiO light, there
is not much difference between the results obtained with the two schedulers.
The much lower computational complexity of CoDiO light allows us to deter-
mine new schedules at much more frequent intervals than we do with CoDiO
(every 5 ms, compared to every 33 ms). As a consequence, the congestion
for CoDiO light scheduler is lower than for CoDiO, as it always waits for the
queue to drain before the next transmission. CoDiO, on the other hand, some-
times sends several packets in the same time slot, as depicted, for example, in
Fig. 3.15, this causes higher congestion. In addition, the shorter time slots of
CoDiO light make for a scheme which is more reactive to feedback information
and which minimizes the time the bottleneck link is left idle. This improves
the overall performance and, therefore, CoDiO light sometimes outperforms
CoDiO, even though it chooses from a smaller subset of transmission sched-
ules. Examining the set of packets transmitted by CoDiO and CoDiO light
reveals that, despite the difference in the order in which packets are trans-
mitted, there is no significant difference between the packets selected by the
schedulers, except those due to retransmission of lost packets.

3.2 Congestion-Distortion Optimized Scheduling 57

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

26

28

30

32

34

36

38

Playout deadline (s)

P
S

N
R

 (
dB

)
Container

CoDiO
ARQ
CoDiO light

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
25

26

27

28

29

30

31

32

33

34

35

Playout deadline (s)

P
S

N
R

 (
dB

)

Foreman

CoDiO
ARQ
CoDiO light

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
16

18

20

22

24

26

28

Playout deadline (s)

P
S

N
R

 (
dB

)

Mobile

CoDiO
ARQ
CoDiO light

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
25

30

35

40

45

Playout deadline (s)

P
S

N
R

 (
dB

)

Mother and Daughter

CoDiO
ARQ
CoDiO light

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

22

24

26

28

30

32

34

36

38

40

Playout deadline (s)

P
S

N
R

 (
dB

)

News

CoDiO
ARQ
CoDiO light

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
25

30

35

40

Playout deadline (s)

P
S

N
R

 (
dB

)

Salesman

CoDiO
ARQ
CoDiO light

Fig. 3.21. Performance of CoDiO and CoDiO light in terms of video quality com-
pared to an ARQ scheduler for different playout deadlines.

58 3 Streaming over Throughput-Limited Paths

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

400

450

500

Playout deadline (s)

T
ra

ns
m

itt
ed

 r
at

e
(k

b/
s)

Container

CoDiO
ARQ
CoDiO light

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

400

450

500

Playout deadline (s)

T
ra

ns
m

itt
ed

 r
at

e
(k

b/
s)

Foreman

CoDiO
ARQ
CoDiO light

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

400

450

500

Playout deadline (s)

T
ra

ns
m

itt
ed

 r
at

e
(k

b/
s)

Mobile

CoDiO
ARQ
CoDiO light

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

400

450

500

Playout deadline (s)

T
ra

ns
m

itt
ed

 r
at

e
(k

b/
s)

Mother and Daughter

CoDiO
ARQ
CoDiO light

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

400

450

500

Playout deadline (s)

T
ra

ns
m

itt
ed

 r
at

e
(k

b/
s)

News

CoDiO
ARQ
CoDiO light

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

400

450

500

Playout deadline (s)

T
ra

ns
m

itt
ed

 r
at

e
(k

b/
s)

Salesman

CoDiO
ARQ
CoDiO light

Fig. 3.22. Performance of CoDiO and CoDiO light in terms of rate compared to
an ARQ scheduler for different playout deadlines.

3.2 Congestion-Distortion Optimized Scheduling 59

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50

100

150

200

250

300

350

Playout deadline (s)

C
on

ge
st

io
n

(m
s)

Container

CoDiO
ARQ
CoDiO light

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50

100

150

200

Playout deadline (s)

C
on

ge
st

io
n

(m
s)

Foreman

CoDiO
ARQ
CoDiO light

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50

100

150

200

250

300

Playout deadline (s)

C
on

ge
st

io
n

(m
s)

Mobile

CoDiO
ARQ
CoDiO light

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50

100

150

200

250

Playout deadline (s)

C
on

ge
st

io
n

(m
s)

Mother and Daughter

CoDiO
ARQ
CoDiO light

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50

100

150

200

250

300

350

400

450

Playout deadline (s)

C
on

ge
st

io
n

(m
s)

News

CoDiO
ARQ
CoDiO light

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50

100

150

200

250

300

350

400

450

Playout deadline (s)

C
on

ge
st

io
n

(m
s)

Salesman

CoDiO
ARQ
CoDiO light

Fig. 3.23. Performance of CoDiO and CoDiO light in terms of congestion compared
to an ARQ scheduler for different playout deadlines.

60 3 Streaming over Throughput-Limited Paths

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (s)

E
nd

−
to

−
E

nd
 D

el
ay

 (
s)

Container

CoDiO light
CoDiO

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (s)

E
nd

−
to

−
E

nd
 D

el
ay

 (
s)

Foreman

CoDiO light
CoDiO

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (s)

E
nd

−
to

−
E

nd
 D

el
ay

 (
s)

Mobile

CoDiO light
CoDiO

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (s)

E
nd

−
to

−
E

nd
 D

el
ay

 (
s)

Mother and Daughter

CoDiO light
CoDiO

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (s)

E
nd

−
to

−
E

nd
 D

el
ay

 (
s)

News

CoDiO light
CoDiO

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (s)

E
nd

−
to

−
E

nd
 D

el
ay

 (
s)

Salesman

CoDiO light
CoDiO

Fig. 3.24. End-to-end delay for CoDiO and CoDiO light.

3.3 Chapter Summary 61

3.3 Chapter Summary

In this chapter we analyze the influence of the encoding rate of a sequence
on the end-to-end performance of a low-latency video streaming system. The
model we present incorporates contributions from both encoder distortion and
packet loss due to network congestion. In this context, the optimal rate for
video streaming allows the compressed video stream to achieve a high video
quality without creating significant congestion on the network. Experimental
results for different video sequences over a simulated network are presented for
a typical server-client scenario. The model captures the influence of different
parameters such as the playout deadline and the throughput of the path and
can be used to predict the end-to-end rate-distortion performance.

For very low-latency streaming, we present a scheduling algorithm which,
for a given level of congestion, maximizes the expected video quality. The
scheduler is based on the popular rate-distortion optimization framework in-
troduced by [77] but uses a new metric and a novel randomized search algo-
rithm to determine efficient packet transmission schedules. We also describe
a low-complexity version of the scheduler which achieves similar performance
and is light enough to run in real-time. For rates approaching capacity, Co-
DiO largely outperforms a conventional ARQ scheduler in terms of conges-
tion, distortion and rate. By considering congestion as a better-suited metric
to evaluate the performance of different schedules, CoDiO achieves the same
rate-distortion results as the state-of-the-art scheduler RaDiO, but reduces
the queuing delay created on the bottleneck link by up to 40%.

Our results lead to the following conclusions:

• As congestion is an increasing function of rate, rate-distortion and congestion-
distortion schedulers have similar rate-distortion performance.

• For the same reason, a rate constraint also indirectly limits congestion.
• One need not trade off rate and congestion. Congestion can be lowered

without increasing rate: this is achieved by “just-in-time” delivery, where
packets are held at the server, rather than on the bottleneck queues of the
network.

A congestion constraint exhibits additional advantages. As it depends on
throughput, it is naturally adaptive to network conditions. Moreover, shap-
ing traffic to reduce self-congestion not only benefits a low-latency streaming
session as highlighted in this chapter, but also results in less congestion for
other users of the network. Therefore, we conclude that congestion is a better
metric than rate for video streaming.

4

Peer-to-Peer Control Protocol

Peer-to-peer (P2P) streaming systems take advantage of the forwarding ca-
pacity of their users to distribute media, in real-time, to large audiences. As
the network fabric is unreliable, since any of the peers may choose to discon-
nect from the system at any time, the performance of such systems depends
on a number of factors including the efficiency and robustness of the control
protocol responsible for maintaining connections among the users. The con-
trol protocol is responsible for establishing different transmission trees which
connect the different peers participating in the video multicast. These trees
are rooted at the source and the branches of each tree link a peer to its descen-
dants. Complementary portions of the video stream are distributed over the
different trees and peers need to join each of the multiple trees to decode and
playout the entire video successfully. As video traffic is relayed by the peers
along the different branches of the multicast trees, the video source need only
directly serve a small subset of peers. This approach is self-scaling, in the-
ory, as long as the video traffic rate does not exceed the average throughput
contributed by the peers.

In this chapter, we describe in detail the Stanford Peer-to-Peer Multicast
protocol (SPPM), designed primarily by Jeonghun Noh. The SPPM protocol
protocol organizes peer nodes in an overlay that consists of a set of comple-
mentary multicast trees. It enables a source to distribute a video stream to
a population of peers via P2P multicast and has been specifically targeted at
low startup latency.

Our goal is to provide, through a description of this example, an overview
of the different steps necessary to setup connections between different peers
of a P2P live streaming network. A general understanding of the protocol
is important to grasp the adaptive video streaming techniques presented in
Chapter 5 which enhance the performance of the system and provide error
resilience. SPPM has recently been deployed over PlanetLab [208], and the
performance analysis presented in [209] confirms the experimental evaluation
described in this chapter.

64 4 Peer-to-Peer Control Protocol

In the next section, we explain, in detail, how connections are built and
maintained in a distributed fashion by the protocol to enable different peers
to cooperate in relaying video traffic. In Sec. 4.2, we describe our experimental
setup and present a performance analysis of the control protocol. We study,
in particular, its latency and overhead. Finally we provide insights on the
limits of the system by testing its scalability and determining the rate it can
support.

4.1 Protocol Description

The control protocol is run by each peer wishing to participate in the multicast
session. The design of the protocol distinguishes between two hierarchical
levels. The first level corresponds to the peer and how it transitions between
different states (this level is denoted by the term “peer” in the following),
the second corresponds to the connections the peer maintains to each of the
multicast trees it will join to receive the full video stream, (this level is denoted
by the term “tree connection”). Managing the state transitions of the trees is
the most important part of the protocol. The legend for the different diagrams
we will use to describe protocol operations is shown in Fig. 4.1.

Fig. 4.1. Legend for protocol state diagrams.

4.1.1 Different Peer States

Each peer can be in one of four states: OFFLINE, JOIN, PROBE and ON-
LINE. The peer level is responsible for a limited number of tasks which have
to do with initialization and basic connection maintenance. The OFFLINE
state corresponds to an inactive peer, the peer can transition to this state

4.1 Protocol Description 65

from any other state; in this case, any connection to other peers of the net-
work is interrupted and the peer is unresponsive. When a peer wants to join
the multicast, it enters the JOIN state.

JOIN State

The operations in the JOIN state, at the peer level, are described in Fig. 4.2.
In this initial phase, the peer exchanges a message with the source of the mul-
ticast to obtain a list of connected peers which it will contact, subsequently,
to join the session. In addition to transmitting this list, the source informs the
peer of the number of multicast trees over which the video stream is trans-
mitted, as well as the rate necessary to support the stream. As soon as the
reply from the source is received, the peer creates the corresponding number
of trees and transitions to the state PROBE. The state of the trees is set to
OFFLINE (this state, at the tree level, will be discussed in the following).
In our experiments, we assume the address of the source is known to all the
peers.

Fig. 4.2. Protocol operations for the peer in JOIN state.

PROBE State

As illustrated in Fig. 4.3, when the peer transitions to the PROBE state, prob-
ing messages are sent to all the members of the list of connected peers which
was transmitted by the source. In their replies, peers indicate their available
amount of throughput as well as their height in the different multicast trees
(i.e. the number of hops separating them from the source).

66 4 Peer-to-Peer Control Protocol

Fig. 4.3. Protocol operations for the peer in PROBE state.

Parents which have enough throughput to support an additional peer con-
nection are selected based on the Joint Parent Selection (JPS) algorithm,
detailed in the diagram in Fig. 4.4. Each tree is considered, iteratively and,
if possible, different parents are chosen for the different trees to make use of
diversity. Among the parent candidates, the peer will choose the one which
is closest to the source in the multicast tree considered. This limits the depth
of the trees being constructed. After the selection of candidates for each tree,
attachment requests are sent out and the state of the trees is set to ATTACH.
The state of trees for which there is no available parent is set to JOIN. Both
these states will be described in the following. In most cases, all the trees have
an identical number of potential parent candidates. However, this might not
be the case when the source itself is a potential candidate, as we require the
source to accept the same number of children for each tree, so as to prevent
any unevenness. In this particular case, considering peers with the smallest
number of candidate parents, first, results in a better use of the available
throughput.

Several other criteria could also be considered in this process. For example,
the amount of available throughput, the round-trip time (RTT) or geograph-
ical proximity. Similarly to the results reported in [210], we observed in [199]
that building minimum-depth trees, compared to minimizing the RTT, lead to
more stable structures as they increase the average uninterrupted connection
time of peers to the multicast trees.

4.1 Protocol Description 67

Fig. 4.4. Joint Parent Selection algorithm.

After this initial connection establishment, managed jointly for all the
trees at the peer level, the different trees operate independently except in
the REJOIN state illustrated in Fig. 4.11 and in the Single Parent Selection
algorithm shown in Fig. 4.10 and discussed below. After the JPS algorithm is
run, the peer enters and remains in the ONLINE state until is is switched off.

ONLINE State

The connection of the trees to their different parents is monitored at regular
intervals by the peer, as illustrated in Fig. 4.5, by running the algorithm Check
Parent shown in Fig. 4.6.

Disconnections are detected by monitoring the arrival of video traffic and
probe responses. To maintain an efficient tree structure, a peer will also dis-
connect from a parent which responds to probing but does not forward video

68 4 Peer-to-Peer Control Protocol

Fig. 4.5. Protocol operations for the peer in PROBE state.

traffic. We observed that it is worthwhile to minimize false detections of dis-
connections at the expense of longer traffic interruptions, since losses may be
mitigated by retransmissions. If the connection of one of the trees has failed,
its state is set to REJOIN. In this case, the video streaming protocol will
be informed of the state of the trees to avoid sending packet retransmission
requests to disconnected parents.

Fig. 4.6. Check parent algorithm. The number of frames per second sent by the
video streaming protocol is denoted by numFps. The number of multicast trees
maintained by the protocol is denoted by numTrees.

All the packets received by the peer are processed at the tree level except
probe messages. In the ONLINE state, if it has more available throughput than
that required to maintain an additional child on one of the trees, the peer will

4.1 Protocol Description 69

reply to these messages by indicating its available amount of throughput and
its height in the different multicast trees.

4.1.2 Different Tree Connection States

A tree connection can be in one of 6 states: OFFLINE, JOIN, PROBE, AT-
TACH, ONLINE and REJOIN. The tree connection only remains in the OF-
FLINE state between the time it is created and the time the JPS algorithm
is run.

JOIN State

A tree connection state is set to JOIN when the JPS algorithm fails to deter-
mine a suitable parent candidate for the tree or when attempts to establish a
connection to a parent fail in the ATTACH or the REJOIN state.

The set of operations taken to transition from the JOIN state to the
PROBE state are almost identical as the ones outlined at the peer level and
are illustrated in Fig. 4.7. The only difference is due to the fact that trees
connections do not have to be created following the reception of the reply of
the source.

Fig. 4.7. Protocol operations in state JOIN.

PROBE State

In the PROBE state, probe messages are transmitted to the different members
of the list of connected peers. As shown in Fig. 4.8, when reply messages are
received, the state of the tree connection is set to ATTACH. It is in this state
that a suitable parent will be determined.

70 4 Peer-to-Peer Control Protocol

Fig. 4.8. Protocol operations in state PROBE.

ATTACH State

When the tree connection is in the state ATTACH, different candidate pa-
rents are queried for attachment, iteratively, until a successful connection is
established. Candidate parents are either determined by the JPS algorithm or
by the Single Parent Selection (SPS) algorithm depending on what was the
state of the tree connection preceding the transition to the ATTACH state,
as shown in Fig. 4.9. As attachment requests are only sent to parents which
have previously indicated they have available throughput, the first attempt
is usually successful. The positive acknowledgment of the attachment sent by
the parent also contains additional information which is retrieved by the peer
and continuously updated in the ONLINE state. The information about the
parent, which is maintained by the peer for each tree connection, includes the
amount of available throughput of the parent, its level in the tree, an estimate
of the round-trip time between the child and the parent, the list of upstream
hosts separating the peer and the source in this tree, and the time the last
hello message reply was received from the parent.

Before entering the ONLINE state, the peer sets the protocol timer which
will indicate when a hello message should be send to the parent. It also sends a
notice to the source of the multicast indicating it has successfully established
a connection to the tree and can serve as a parent candidate for other peers
looking to join the session.

The SPS algorithm is illustrated in Fig. 4.10. It is run in the ATTACH state
when a peer needs to select a suitable parent candidate in one of the trees.
Similarly to the JPS algorithm, the SPS algorithm attempts to minimize the

4.1 Protocol Description 71

Fig. 4.9. Protocol operations in state ATTACH. The estimated round-trip time to
a parent is denoted by RTT.

tree height while maximizing diversity by selecting parents as close as possible
to the source which are not parents of the peer in the other trees.

Fig. 4.10. Single Parent Selection algorithm.

72 4 Peer-to-Peer Control Protocol

REJOIN State

Ungraceful disconnections occur when a peer leaves the multicast without
notice. This disrupts the connection of its descendants. After leaving the mul-
ticast, the peer stops forwarding video packets and is unresponsive. When a
peer detects it has lost its connection to one of the trees through the Check
Parent algorithm described above, it will enter the REJOIN state.

As illustrated in Fig. 4.11, the peer will try to rebuild a connection by
choosing one of the remaining parents. If this fast recovery mechanism suc-
ceeds, the tree connection state will be set to ONLINE. If it fails, the tree
connection state will be set to JOIN and the source will be contacted to ob-
tain a new list of candidate parents. Please note that while hosts reconnect,
retransmission requests are issued over the other multicast trees to recover
missing video packets.

In the REJOIN state, the peer will also process control packets it may
receive on this tree. Hello messages from its children will be answered and
children which may decide to disconnect from the peer will be deleted from
the children list when a leave notice message is received. Attachment requests
will be ignored.

Fig. 4.11. Protocol operations in state REJOIN.

4.1 Protocol Description 73

Fig. 4.12. Protocol operations in state ONLINE.

ONLINE State

Except when connections are being (re)established, tree connections remain
in the ONLINE state. At the tree connection level, the peer will inform its
parents of its presence by transmitting periodic “hello” messages, as shown
in Fig. 4.12. Reception of a hello message generates an immediate response
intended to confirm the parent’s presence. In addition to verifying the con-
nection, these messages are also used to exchange information between two
neighboring peers.

The child includes in the messages the size of the subtree below it. This
number is aggregated from the bottom of the tree to the top, it is used by
the prioritized video streaming algorithm described in Chapter 5. Based on
the exchange of hello messages, the child estimates the round-trip time to
its parent, using a moving average. We denote by RTTstoredold

the previous
estimated round-trip time, by RTTnew the latest round-trip time measurement
and by RTTstored the new estimated round-trip time which is estimated as
follows:

RTTstored = 0.7RTTstoredold
+ 0.3RTTnew.

When replying to a hello message, parents transmit their available throughput
and the list of peers separating them from the source. This ensures a host
does not reconnect to one of its descendants when it is disconnected from a
multicast tree.

When an attachment request is received and there is enough available
throughput, the requesting peer will become a child on the corresponding
multicast tree. Information such as its address, its number of descendants and
the last time a hello message has been received is initialized. A reply message
is sent back to the peer indicating whether or not the attachment has been

74 4 Peer-to-Peer Control Protocol

successful. In addition, the available throughput of the peer will be decreased
by the source rate divided by the number of multicast trees.

Fig. 4.13. Check children algorithm.

The peer will also periodically check the presence of its children by running
the Check Children algorithm shown in Fig. 4.13. Detecting the disconnection
of a child is not so critical to the overall performance as it only results in a
temporary waste of the parent’s network resources. Since the penalty of a false
child leave detection is high, a longer time interval is used (on the order of a
few seconds). When a child leave is detected, parents will remove it from their
forwarding table and inform the source to purge it from the list of connected
peers, if it has logged off. This is carried out by sending the source an explicit
leave notification message.

4.1.3 Multicast Source

Although it plays a central role in the multicast, the source shares most of
the functionalities of the peers. It is continuously in the ONLINE state, both
at the peer and at the tree connection level, and processes probe messages,
attachment requests, leave notices and hello messages in the same way as the
other members of the session.

In addition, the multicast source is responsible for maintaining and trans-
mitting the list of peers connected to the session. New peers are added to the
list when they inform the source they have successfully established a connec-
tion to one of the trees. They are deleted when a peer detects a child has left
and notifies the source, as illustrated in Fig. 4.13.

To control the overhead created by the peers in the probing state, when
probing messages are sent out to discover parent candidates, the source adjusts
the size of the list sent to joining peers according to the current group size
and the number of multicast trees. At the beginning of the session, the group
size is small and the list size corresponds to the group size. When the group

4.1 Protocol Description 75

size reaches a certain point, the list size increases logarithmically. For multiple
trees, the source sends a larger list to allow a joining peer to better exploit
path diversity. The exact size of the list, Ls, as a function of the number of
connected members n and the number of trees numTrees is:

Ls = n, if n < 3numTrees

= �5 ln(n − (5numTrees− 3)) + 3numTrees− 5 ln(5) + 0.5�, otherwise.
(4.1)

Figure 4.14 illustrates the size of the list sent to the peers as a function of
the number of members of the session and of the number of trees.

10
0

10
1

10
2

10
3

10
4

0

10

20

30

40

50

60

70

Li
st

 s
iz

e

Number of connected peers

1 tree
2 trees
3 trees
4 trees
8 trees

Fig. 4.14. Size of the list of connected peers transmitted by the source as a function
of the number of members of the multicast session. The curves are shown on a semi-
logarithmic scale for different numbers of trees.

4.1.4 Protocol Settings

Protocol Timers

Table 4.1, indicates the different time intervals which are used by the protocol
and which were indicated in the protocol state diagrams described in the
previous sections. The interval used to detect that the source or another peer
has ignored a message in the JOIN, PROBE and ATTACH states is 0.5 s.
When a peer is rejoining, this interval may be larger, depending on the round-
trip time estimate. The connection state of the parents is checked 30 times
per second. Finally, a child is considered to have left the multicast when it
does not send hello messages for more than 2.0 seconds.

76 4 Peer-to-Peer Control Protocol

Table 4.1. Timer and time threshold settings.

INTERVAL JOIN 0.5 s
PROBE INTERVAL 0.5 s

INTERVAL ATTACH 0.5 s
INTERVAL REJOIN max(0.5 s, 3RTT+0.3 s)
INTERVAL ONLINE 0.033 s
CHILD INTERVAL 2.0 s

Protocol Packet Sizes

Table 4.2 indicates the size of the different control packets used to simulate
the P2P protocol in NS-2.

As stated above, we assume that the protocol runs over the UDP/IP proto-
col stack. The size of these headers is 8 and 20 bytes, respectively. All the mes-
sages need to include a packet type field to be identified by the receivers (this
can be signalled in less than 4 bits). The LIST REQUEST, JOIN REPORT
and PROBE messages do not require any other information, as the protocol
can take advantage of the information included in the IP and UDP header.
The ATTACH REQUEST and LEAVE NOTICE messages should indicate,
in addition, the tree they are destined to (4 bits). For all these messages 40
bytes are sufficient to encode the transmitted information.

LIST REQUEST REPLY messages indicate the addresses of the different
members of the list of connected peers. They also indicate the source rate
and the number of trees. Depending on the size of the list transmitted by the
source (i.e., between 1 peer and 55 peers), the size of this packet can vary
between 50 and 500 bytes (8 bytes per IP address and 40 bytes for additional
information including headers). Instead, we assume a fixed size of 120 bytes.
This has little influence on the results we present (as we will see in Sec. 4.2,
traffic due to join messages represent 1% of the control protocol, which itself
only represents 2-5% of the total traffic).

PROBE REPLY messages contain their height in the different trees (4
bytes), the available throughput of the peer (this can be encoded with 1 kb/s
precision with 10 bits). We assume these packets are 80 bytes long which is
more than sufficient.

ATTACH REPLY messages contain the result of the attachment (1 bit),
the tree they belong to (4 bits), the available throughput of the peer (this can
be encoded with 1 kb/s precision with 10 bits), and the addresses of peers
between the source and them. We assume these packets are 80 bytes long,
which leaves enough space for 6 peers. As tree heights typically vary between
1 and 10, in the experiments we present, this is a justifiable approximation.

HELLO messages indicate the tree they are destined to (4 bits), the num-
ber of descendants of a peer (2 bytes) and the round-trip time between the

4.2 Experimental Protocol Evaluation 77

peer and the parent (1 byte for round-trip times between 1ms and 256 ms,
with 1 ms precision).

HELLO REPLY messages include the available throughput (10 bits), the
tree they are destined to (4 bits), their height in the tree (4 bits), and the
addresses of peers between them and the source. These addresses are first sent
in the ATTACH REPLY message; they only need to be transmitted when a
change occurs. As this does not occur frequently, we assume both HELLO
and HELLO REPLY messages can be encoded with 40 bytes.

Table 4.2. Sizes of different packet types.

LIST REQUEST 40 bytes
LIST REQUEST REPLY 120 bytes

ATTACH REQUEST 40 bytes
ATTACH REPLY 80 bytes
JOIN REPORT 40 bytes

LEAVE NOTICE 40 bytes
HELLO 40 bytes

HELLO REPLY 40 bytes
PROBE 40 bytes

PROBE REPLY 80 bytes

4.2 Experimental Protocol Evaluation

In this section, we describe the experimental setup used to simulate P2P
networks with thousands of peers and present an experimental performance
evaluation of the protocol. In the simulations, video traffic is sent over the
different multicast trees which are constructed by the protocol. Successive
video packets are sent over the different trees in round-robin order. A detailed
description of the video streaming protocol will be given in Chapter 5. It is
not necessary for the understanding of the results presented in this chapter.

4.2.1 Experimental Setup

Simulated Network

To evaluate the performance of the P2P system we carry out experiments over
networks ranging from 10 to 3000 peers simulated in ns-2. The peers, including
the source, are randomly selected among all the edge nodes of the network
topologies. The backbone links are sufficiently provisioned so that congestion
only occurs on the links connecting the peers to the network. The propagation

78 4 Peer-to-Peer Control Protocol

delay over each link is 5 ms. For most of the experiments the diameter of the
network is 10 hops; in the cases when the number of participating peers is
75 or less, the diameter of the network is 8 hops. Losses are only due to
disconnections or delay, and transmission errors due to the presence of ISP
boundaries or potential wireless last-hop links are ignored.

The control and transmission protocol is implemented over the UDP/IP
protocol stack and we ignore any NAT or firewall issue which may limit con-
nectivity or drop this type of traffic.

Simulated Host

Peers have heterogeneous but fixed uplink bandwidth which they have mea-
sured and know accurately. The bandwidth of the peers reflects today’s avail-
able ADSL network access technology. The bandwidth distribution is given in
Tab. 4.3. It is derived from the findings of [210], which provides an estimate of
the bandwidth of hosts connecting to media servers maintained by a leading
content delivery network in 2003-2004. The uplink and downlink of the source
are assumed to be 1.4 Mb/s.

The degree indicates the number of children that a parent transmitting a
300 kb/s stream can potentially support. Note that more than half of the peers
do not have enough throughput to forward the video stream assuming a system
with only 1 multicast tree, thereby making them free-riders of the system.
However, when more trees are used, the video stream is divided into several
smaller sub-streams and these peers have enough resources to contribute their
uplink to the system and forward part of the data.

Table 4.3. Peer bandwidth distribution. The degree is computed for a 300 kb/s
stream.

Degree
Downlink Uplink Percentage 1 tree 2 trees 3 trees 4 trees

512 kbps 256 kbps 56% 0 1 2 3
3 Mbps 384 kbps 21% 1 2 3 5

1.5 Mbps 896 kbps 9% 2 5 8 11
20 Mbps 2 Mbps 3% 6 13 20 26
20 Mbps 5 Mbps 11% 16 33 50 66

In the experiments, the dynamic behavior of peers is modeled as follows.
A flash crowd is simulated by letting all the peers request the video dur-
ing the first minute of the video session. During the remaining time, peers
join and leave the session ungracefully, following a random Poisson process.
Peers remain “on” for an average time of 4.5 minutes. To keep the system in

4.2 Experimental Protocol Evaluation 79

steady-state, disconnected peers reconnect to the system after remaining “off”
for 30 seconds, on average (disconnections also follow a Poisson process).

4.2.2 Control Protocol Traffic Distribution

The pie chart shown in Fig. 4.15 illustrates the distribution of control traffic
when 4 multicast trees carry the video traffic. To facilitate the analysis we
group control messages in 4 main categories. Join messages are exchanged
when a peer initially connects to the multicast, they represent 1% of the total
control traffic. Attachment requests, which include connection or reconnection
requests to the multicast trees also make up for 1% of the protocol overhead.
The two most important categories are probe messages and hello messages.
The balance between these two categories depends on the number of multicast
trees. In the example shown in Fig. 4.15, hello messages represent 83% of
the control traffic and probe messages 15%. This reflects the stability of the
multicast trees, which do not require a large amount of control traffic for
maintenance. When the number of trees is larger, the relative proportion of
probe messages increases. It reaches 20 % of the overall control traffic for 8
trees. This is largely due to the fact that more parents are queried during the
attachment process. We believe the protocol traffic can be further optimized
to reduce the hello traffic. The relative proportion of control traffic and video
traffic will be discussed in the following.

Fig. 4.15. Relative distribution of control traffic. Experiment run for 300 peers on
a 1000-node graph. Four multicast trees are maintained by the protocol.

4.2.3 Join and Rejoin Latency

Figure 4.16 shows the cumulative distribution function (CDF) of the join time,
i.e., the time necessary for a node to join a multicast tree. The CDF for the

80 4 Peer-to-Peer Control Protocol

rejoin time, i.e., the time a node takes to rejoin a tree once the disconnection
of its parent has been detected is also represented. For more than 90% of
the peers, joining takes less than 0.7 s. Indeed in most cases, this process
can be decomposed into 3 steps: 1 round-trip time to the source to obtain a
list of candidate parents (100 ms, on average, for the network on which the
simulation is run), waiting for the protocol timer to expire in the probe state
(0.5 s), 1 round-trip time to the chosen parent candidate (100 ms, on average).
This indicates, that in most cases, at least one of the peers queried during
the PROBE state does not have enough available throughput and does not
reply to the probe message. This forces the peer to wait for the protocol timer
to expire. In a real-life implementation, join and rejoin latencies should also
include the time to connect two hosts which might both be behind NATs. As
running the protocol STUN [192] to establish such a connection requires less
than a second, the joining latency of the system would be comparable to a
server-based system which redirects users towards the closest proxy.

Once a peer discovers it has been disconnected from one of the multicast
trees, it takes an additional 0.7 s to rejoin, on average. This process is ex-
tremely fast 40% of the time, when a peer is able to reconnect to a parent it
is already receiving traffic from, on one of the other trees, following the algo-
rithm detailed in Fig. 4.11. In this case, the rejoin time corresponds to one
round-trip time to this particular parent (100 ms, on average, for the network
used in this simulation), if there is no congestion. The delay increases when
a peer needs to request a fresh list of connected peers from the source. In
this case, the peer has to go through the join process again, which takes, as
seen above, about 0.7 s for the case depicted in Fig. 4.16. In the worse cases,
this may occur several times especially since the peer is competing with other
disconnected users. This explains the long tail of the CDF.

4.2.4 Scalability

Figure 4.17 illustrates the performance of the protocol in terms of scalability.
The aggregate video traffic exchanged between the peers, as well as the con-
trol traffic is shown on the left vertical axis. The amount of control overhead
is represented on the right vertical axis. Results are collected for a 250 kb/s
video stream. In this set of experiments, we use 4 multicast trees and allow
no retransmission. As expected, the aggregate video traffic exchanged over
the network increases linearly with the number of participating peers. Nev-
ertheless, the percentage of traffic representing control remains constant and
represents only between 2 and 3% of the total traffic. This constant overhead
shows that the protocol is scalable within the limits of the system. Note that
it is difficult to collect results for larger populations due to the implementa-
tion of the ns-2 simulator which computes complete, non-hierarchical routing
tables at each physical node. The sheer size of these tables significantly slows
down the simulations for number of users exceeding 1000.

4.2 Experimental Protocol Evaluation 81

Fig. 4.16. Distribution of the time needed to join a multicast tree (left) and to
rejoin a tree after a parent disconnection (right). Experiment run for 300 peers on a
1000-node graph. Four multicast trees are maintained by the protocol. The diameter
of the network is 10 hops.

The only centralized part of the protocol is due to traffic exchanged with
the source for connection establishment. As discussed above, this fraction
of the protocol traffic represents only 1% of the total overhead. For 3000
peers, connection establishment traffic amounts to almost 70 kb/s on both
the uplink and the downlink of the source. Hence, for larger populations of
peers, a proportional amount of throughput should be reserved at the source
to avoid disrupting the video multicast.

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

T
ra

ffi
c

(G
b/

s)

Number of peers
10

1
10

2
10

3
0%

2%

4%

6%

8%

10%

P
er

ce
nt

ag
e

of
 c

on
tr

ol
 o

ve
rh

ea
d

Video
Control

Fig. 4.17. Aggregate traffic for different number of participating peers and control
overhead. Results are shown on a logarithmic scale. Figure reprinted, with permis-
sion, from [211] c© 2006 IEEE.

82 4 Peer-to-Peer Control Protocol

4.2.5 Limiting Throughput

In this section, we discuss the video rate which can be supported by the P2P
network. Our goal is to analyze whether or not stable multicast trees can
be built by the protocol when the attachment of each peer requires a given
throughput (i.e., the rate indicated by the source during the JOIN process, as
illustrated in Fig. 4.2). Unlike in Chapter 5, we do not consider, in this section,
whether this throughput is high enough to support a delay-constrained video
stream.

The average throughput of the peers needs to be sufficient to support,
continually, the connection of other peers on the different multicast trees. In
theory, one would expect this to be possible as long as the average throughput
of the peers remains above the rate each peer requests to connect to the P2P
network. This, however, overlooks the difficulty of not depleting the through-
put available to one of the trees, when the number of peers is limited and
the available throughput is lower than its statistical average. In order to limit
this effect, the resources of the network need to exceed the source rate by a
significant margin.

We investigate what is the limiting throughput of the P2P network by
observing the variation of the tree sizes as a function of time. We run the
experiment for three different source rates: 350 kb/s, 400 kb/s and 450 kb/s.
In order to avoid creating any congestion-related artifact the actual rate of
the transmitted video stream is set to 164 kb/s in each experiment, which can
be easily accomodated by the network. Hence, the only variable parameter is
the rate indicated by the source during the JOIN process (350 kb/s, 400 kb/s,
and 450 kb/s) which determines the amount of available throughput peers
need to construct the multicast trees. Results indicating the structure of the
different multicast trees are collected every 3 seconds for 800 seconds, starting
100 seconds after the beginning of the multicast session, after the system has
reached steady state. Results are reported for the tree with worst performance
(i.e., the one for which variations are most noticeable). Results are shown in
Fig. 4.18. When the source rate is 350 kb/s, when 3, 4 or 8 trees are maintained
by the protocol, the tree size appears stable. The tree size dips 3 times during
the experiment but this occurs for very short periods of time and does not
appear on the graphs. When the protocol maintains 2 trees, these dips are
more frequent, however, even in this case, the tree size appears stable. For
source rates of 400 kb/s, regardless of the number of trees, the frequency of
the dips increases. For 2, 4 and 8 trees, there is at least a period during which
less than 50 peers are attached to the multicast trees for 10 seconds or more.
These events occur even more frequently when the source rate is 450 kb/s.
In these two cases, the tree size is much more unstable. The pronounced tree
size dips are caused by the disconnection of one of the highest peers of one of
the trees, followed by a sequence of reconnections which lead to the absence
of peers connected to this tree with enough available throughput to support

4.2 Experimental Protocol Evaluation 83

an additional connection. This “starvation” makes it impossible for peers to
join the tree, for long periods of time.

100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

300
Source rate 350 kb/s

Time (s)

T
re

e
si

ze

2 trees
3 trees

100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

300
Source rate 350 kb/s

Time (s)

T
re

e
si

ze

4 trees
8 trees

100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

300
Source rate 400 kb/s

Time (s)

T
re

e
si

ze

2 trees
3 trees

100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

300
Source rate 400 kb/s

Time (s)

T
re

e
si

ze

4 trees
8 trees

100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

300
Source rate 450 kb/s

Time (s)

T
re

e
si

ze

2 trees
3 trees

100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

300
Source rate 450 kb/s

Time (s)

T
re

e
si

ze

4 trees
8 trees

Fig. 4.18. Tree size variation as a function of time. Results are shown for different
source rates: 350kb/s (top), 400kb/s (middle), 450kb/s (bottom). Plots on the left
represent the results when the protocol maintains either 2 or 3 multicast trees, plots
on the right represent the results when the protocol maintains either 4 or 8 multicast
trees. In all cases, results are shown for the tree with the worse performance. The
video stream sent from the source is 164 kb/s.

This surprising result can be explained as follows. In addition to the re-
quirement that the average uplink throughput of the peer be above the source
rate, another condition needs to be satisfied. As the trees are being built, there
needs to be, continually, enough available throughput to support at least one

84 4 Peer-to-Peer Control Protocol

extra peer on each of the trees. This requirement is easy to fulfill after each tree
reaches a sufficient size, provided the constraint on the average throughput
is lax. However, due to the non-homogeneous bandwidth distribution of the
peers, it may hamper the initial phases of growth of a tree. This is illustrated
in Fig. 4.19, where we assume that the source may support 6 connections but
that peers R1 to R5 can only support 1 connection. In this simple example,
no further connection to Tree 2 is possible.

Fig. 4.19. Tree construction failure due to the presence of many low bandwidth
peers at the base of the multicast tree.

We explore this effect in more detail by studying a simple model of the
tree-building algorithm. We model the growth of the trees as follows: we num-
ber the peers and add them to the different trees, successively. When adding
peer i to one of the trees, we consider peers 1 (i.e., the source) to i−1 consec-
utively and create a connection to the first peer with available throughput; we
then repeat the process for the following tree. If a peer is unable to establish
a connection a failure is declared. The model ensures minimum height trees
are built. For simplicity, we do not model the diversity criterion which is im-
plemented in the two parent selection algorithms of the protocol, represented
in Fig. 4.4 and in Fig. 4.10. Failures only occur in the initial stages of the
tree building algorithm (i.e., for less than 30 peers). We collect results for 300
peers, different source rates and different numbers of trees. While collecting
results, we run the experiments 5000 times for each point. Results indicating
the probability of success of adding the 300 peers to the multicast trees are
represented in Fig. 4.20.

While the source rate remains under 256 kb/s, the probability of success is
1. This is not surprising as this corresponds to the smallest uplink bandwidth
of the peers. In this case, it is always possible to add a peer. For example, it

4.2 Experimental Protocol Evaluation 85

200 250 300 350 400 450 500 550 600
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rate (kb/s)

P
ro

b
a

b
il
it
y
 o

f
s
u

c
c
e

s
s
fu

ll
y
 b

u
il
d

in
g

 t
re

e
s

2trees
3 trees
4 trees
8 trees

200 250 300 350 400 450 500 550 600
1

1.5

2

2.5

3

3.5

4

4.5

5

Rate (kb/s)

A
v
e

ra
g

e
 r

e
s
o

u
rc

e
 i
n

d
e

x

2 trees
3 trees
4 trees
8 trees

Fig. 4.20. Estimate of the probability of successfully building the multicast trees
for different source rates and different numbers of trees (left). The probability is
computed by attempting to build 300-peer trees. For each of the 5000 trials con-
ducted, different bandwidths are attributed to the different peers according to the
distribution indicated in Tab. 4.3. Average resource index for different source rates
and different numbers of trees (right).

is possible to build a connection to the last peer that has joined the network.
For rates above 256 kb/s, the probability of successfully building the multicast
trees decreases. The curves follow the same trend for different numbers of
trees and while the probability of success is usually higher for larger number
of trees, this is not always the case. For rates above 400 kb/s the probability
of successfully building the multicast trees is under 70%. On the right of
Fig. 4.20, we show the resource index of the network of peers for different
number of trees and difference source rates. This number is the average degree
(as represented, for example, for a source rate of 300 kb/s in Tab. 4.3) divided
by the number of trees; in other words, the number of children which can be
supported per peer. The resource index does not vary smoothly as a function of
rate; in addition, crossings occur between curves representing different number
of trees, which indicates that, for some particular rates, throughput usage may
be higher for smaller number of trees. The variation of the resource index
explains the uneven variation of the probability of successfully building a tree
and the crossovers of these different probabilities for different numbers of trees.

As observed in our network experiments, the curves of the model predict
that for a given source rate, despite the fact that the average throughput
of the peers is sufficient, the probability of successfully building the trees
may be significantly lower than 1. This phenomenon is caused by the non-
homogeneous bandwidth distribution of the peers which lead to situations
where the throughput available to the peers is not sufficient. This occurs
when there are very few peers attached to a tree and they mostly have low

86 4 Peer-to-Peer Control Protocol

uplink bandwidth. This is why, when the source rate is above 400 kb/s, when
the disconnection of one of the peers close to the source forces the affected
tree to be almost entirely rebuilt, the tree construction sometimes fails and
many peers are disconnected from the tree for a long period of time. This
happens, for example, if a low bandwidth peer joins the top of the tree and
accepts as a child one or several peers on another tree. Eventually, peers
causing starvation will disconnect and the tree will be rebuilt successfully.
Compared to the average uplink throughput of the peers of 914 kb/s, which
can be derived from Tab. 4.3, limiting the source rate to between 350 kb/s
and 400 kb/s represents an over-provisioning factor between 2.6 and 2.3. This
is significantly more than the throughput required for a server-based system
and is a limitation of this tree-based P2P protocol. This requirement may be
alleviated by actively managing the tree structures to limit the attachment of
low bandwidth peers at the base of the tree. This improvement, however, is
not incorporated in the version of the protocol used in this book.

4.3 Chapter Summary

A video stream can be forwarded to a large population of peers, without the
need of any dedicated infrastructure, by letting the viewers contribute their
uplink to relay traffic over application-layer multicast trees. We analyze, in this
chapter, the performance of a protocol which lets peers construct and maintain
these trees in a distributed fashion. It achieves very good performance in
terms of overhead, latency and scalability. Connection or reconnection to the
trees require less than 2 s and the overhead of the protocol represents only 2
to 5% of the total exchanged traffic, depending on the number of multicast
trees. This is independent of the number of participating peers, within the
limits of the simulation system, which lets us consider up to a few thousand
peers. To ensure the stability of the trees, the average throughput of the peers
should be at least twice the throughput necessary to attach a joining peer
to the multicast trees. Otherwise, due to the non-homogeneous bandwidth
distribution of the peers, starvation may occur and hamper the initial growth
of a tree. When throughput over-provisioning is sufficiently high, the protocol
leads to stable distribution structures despite the dynamic behavior of the
peers which may disconnect from the session at any time.

5

Video Streaming over a Peer-to-Peer Network

The performance of P2P video streaming systems can be improved by breaking
away from the common practice which focuses on designing better control
protocols, while ignoring the properties of the transmitted data stream. An
alternative is to design adaptive algorithms where encoding and streaming are
tailored to the video content and to the network protocol. Although adaptive
video encoding and streaming have been studied for a number of years in
server-client systems and some of this work was extended to IP multicast, this
approach is novel for P2P streaming systems which are still in their infancy.
The algorithms we present in this chapter could be used for different P2P
control protocols based on multiple multicast trees. In our experiments, we
rely on the distributed control protocol presented, in detail, in Chapter 4.

We begin this chapter by describing a simple video streaming protocol
which we will improve upon in the second part of the chapter. We describe
a low-complexity video scheduler for P2P networks, based on the concept of
congestion-distortion optimized scheduling analyzed in Chapter 3. This algo-
rithm is composed of two parts. The first part is a prioritization scheme which
is run by the sending peers. This scheme schedules the transmission of video
packets destined to multiple peers. It bases its decisions on the unequal con-
tribution of different packets to the overall video distortion. It also takes into
account information collected about the structure of the multicast trees, to
favor peers with a large set of descendants. Similarly to CoDiO light, it spaces
its transmissions to avoid creating congestion on its uplink. The second part
is a distortion-optimized retransmission scheduler, run by the receivers to
recover missing video packets when they are disconnected from one (several)
multicast tree(s). The performance of this hybrid algorithm (part sender, part
receiver), denoted by CoDiO P2P, is compared to the CoDiO scheduler de-
scribed in Chapter 3. Finally, in Sec. 5.3, we analyze the performance of these
different video streaming techniques, for a simulated network with hundreds
of peers.

88 5 Video Streaming over a Peer-to-Peer Network

5.1 Video Streaming Protocol

We assume peers run the control protocol described in Chapter 4 to build
different multicast trees rooted at the source. Each peer is an interior node
or a leaf in all of the different trees, unless it has been disconnected and
is trying to reestablish a connection. Peers receive video traffic from their
different parents in each of the multicast trees. When one of their parents
leaves the session, peers issue retransmission requests to the parents they are
still connected to, in order to mitigate losses, while the control protocol seeks
a suitable parent to reconnect to.

5.1.1 Video Packet Transmission

The multicast source is responsible for sending the media stream over the dif-
ferent transmission trees. We consider a simple distribution mechanism where
video frames are transmitted, following their encoding order, at regular inter-
vals, 30 times per second1. After MTU fragmentation, the video frames are
sent, packet by packet, over different multicast trees. If the number of trees is
denoted by numTrees, Packet n is transmitted over Tree n mod numTrees.
This provides a simple mapping between packet numbers and multicast trees.
This mapping is helpful for error resilience, as each peer knows the sequence
numbers of the different packets it is supposed to receive over each tree. This
balanced distribution mechanism also prevents large rate spikes on the trees
which could create congestion.

The multicast source is also responsible for packetizing the media stream,
prior to transmission. As video is transmitted to the different peers over mul-
tiple paths, out-of-order arrivals are expected. Packet headers are therefore
necessary to provide enough information to reconstitute the media stream be-
fore decoding. Video packet headers are created by the source; they contain
the packet number, the video frame number, the total number of packets in
the frame, the place of the particular packet among them and the playout
deadline of the packet. Before transmitting a packet on one of the trees, the
source will also indicate in its header the sequence number of the previous
packet it transmitted over this tree, to facilitate the detection of dropped
packets.

When a peer receives a video packet on one of the multicast trees, it
immediately forwards it to its descendants on the same tree, as long as it is
not past its playout deadline. Before doing so, the peer updates the header
of the video packet to indicate the sequence number of the previous packet it
sent on the tree.

1 For a video sequence encoded at 30 frames/s.

5.2 Peer-to-Peer CoDiO Scheduling 89

5.1.2 Retransmissions

When the control protocol detects a parent disconnection, the peer creates
a list of missing packets. This list contains the sequence number of all the
packets which should have been received over the tree the peer is disconnected
from. The range considered extends from the next packet to be decoded, to
the highest packet number received on the other multicast trees. To ensure all
the missing packets are identified the list of missing packets is refreshed every
100 ms, until the peer has re-established a connection to the missing tree and
has received several video packets from this tree.

When packets are dropped, out-of-order arrivals are detected thanks to
the information contained in the video header which includes the sequence
number of the packet previously sent along the same multicast tree. A peer
requests the missing packets which are not past due from its different parents,
following the sequence number of the packets. Lower sequence numbers are
requested first. This approach benefits from the diversity in the trees built
by the control protocol which allows a peer to request retransmissions over
alternate paths.

Retransmission requests place additional burden on the uplink of forward-
ing peers, already responsible for forwarding video packets transmitted over
one of the multicast trees. As an outstanding retransmission request repre-
sents a packet being transmitted or processed between the two peers, these
packets potentially contribute to end-to-end delay, and hence to congestion.
The retransmission scheduler limits the congestion created by retransmissions
by bounding the number of unacknowledged retransmission requests from a
peer to each of its parents. When a retransmission request may be sent to two
or more parents, the peer chooses one of them at random. Obviously, retrans-
mission requests are not sent over trees from which the peer is disconnected.

When a parent receives a retransmission request for a packet it has not
received, it informs the requesting peer by sending a negative acknowledgment
(NACK) back. If it has already received this packet, it is retransmitted imme-
diately. The exact time at which a retransmission reply will be received by the
peer depends on the state of the bottleneck queue of its parent, on its uplink
throughput and on future packet arrivals. Therefore it cannot be estimated
precisely. A retransmission request is assumed to be lost if it has not been
acknowledged or if no reply has been received in the following 200 ms. In our
simulation setup, the average forward trip time is 50 ms, therefore, 200 ms is
sufficient to obtain a retransmitted packet as packet sizes are smaller or equal
to MTUs.

5.2 Peer-to-Peer CoDiO Scheduling

In this section, we analyze the benefits of packet scheduling for P2P networks.
The schedulers CoDiO and CoDiO light presented in Chapter 3, perform op-
timized scheduling of video in a server-client scenario and achieve significant

90 5 Video Streaming over a Peer-to-Peer Network

performance gains compared to a content-oblivious sequential scheduler. How-
ever, neither CoDiO nor CoDiO light is well-suited to P2P video streaming.
A new type of scheduler, based on the ideas developed in Chapter 3, is needed
in this scenario.

First, CoDiO and CoDiO light assume the server has extensive knowledge
of the rate-distortion properties of the video streaming being sent to the re-
ceiver. For P2P streaming, clients which join the multicast also relay the video
stream. We cannot assume these hosts have access to detailed information on
the stream they are forwarding. Although the source of the multicast could
have access to this type of data, it would be impractical to transmit it to the
large number of peers of the session which schedule video packets.

A second impediment is that our video streaming protocol does not in-
clude acknowledgments. When the channel is prone to losses, both CoDiO
and CoDiO light rely on acknowledgments (ACKs), sent from the client for
each transmitted packet, to refine their estimates of the set of received pack-
ets. ACKs are important to compute accurate expected distortion. This was
studied, for example, in [77, 212], for RaDiO. In P2P streaming, sending ac-
knowledgments will reduce the uplink throughput of the clients, which, in this
case, is used to forward video packets to other peers. If we assume the size
of an acknowledgment packet to be approximately 40 bytes, this results in
9.6 kb/s of traffic, when video is sent at 30 frames per second. For the se-
quence Foreman, encoded at 257 kb/s, when the video is transmitted packet
by packet because of MTU packetization, the ACK traffic rate reaches 15
kb/s. This should be avoided as it would more than double the rate of control
traffic which represents only a few percent of the video traffic exchanged, as
analyzed in Chapter 4.

Finally, P2P video streaming also requires very low complexity. Indeed,
peers with high uplink throughput may forward video to more than a dozen
peers. For CoDiO, this would increase the search space exponentially. For
CoDiO light, the number of schedules to compare would scale up linearly. As
we cannot assume that peers are dedicated to forwarding video packets and
may be simultaneously running other applications, this may increase the CPU
requirement for these peers beyond an acceptable level. In addition, because of
the computational constraints of our experimental environment, the scheduler
should be simple enough to simulate hundreds of peers, all simultaneously
scheduling video packets, on one Pentium 4, clocked at 2.8 GHz, with 1 GB
of memory.

Extending CoDiO light to P2P requires considering several new problems
which characterize the particular nature of this transmission scenario. Unlike
unicast, each peer receives video packets from a set of senders and forwards
them to several receivers. This raises a number of interesting questions. How
can a peer implement an adaptive forwarding transmission scheme and yet
coordinate its scheduling policies with other senders forwarding video packets
to the same descendant? Which of its different descendants should a peer favor
when its resources are insufficient to serve them all?

5.2 Peer-to-Peer CoDiO Scheduling 91

In the next two sections (Sec. 5.2.1 and Sec. 5.2.2), we describe a low-
complexity scheduling scheme, which we denote by CoDiO P2P, which builds
on the ideas developed in Chapter 3. This algorithm is composed of two parts:

• At the sender, a prioritization scheme schedules the transmission of video
packets destined to multiple peers. It bases its decisions on the unequal
contribution of different packets to the overall video distortion. It also takes
into account information collected about the structure of the multicast
trees, to favor peers with a large set of descendants. Similarly to CoDiO
light, it spaces its transmissions to avoid creating congestion on its uplink.

• At the receiver, we describe a distortion-optimized algorithm to recover
missing video packets when a peer is disconnected from one (or several)
multicast tree(s).

In Sec. 5.2.3, the performance of CoDiO P2P is compared to the CoDiO
scheduler described in Chapter 3.

5.2.1 Sender-Driven Prioritization

Relaying traffic over the uplink of the peers may lead to congestion on the
multi-hop path separating the source from any particular peer. In particular,
because the rate of a video stream often varies or because of unexpected
retransmission requests, a peer may sometimes lack the resources to forward
all the data expected by its descendants. Scheduling can help maintain video
quality in the instances when a peer has to drop some packets to ensure
timely delivery of the more significant portion of the video. The prioritization
algorithm determines iteratively which is the next most important packet by
comparing the importance of each queued packet.

For Packet n the importance, D̃(n), is computed as a function of the video
frame type and of the order in the GOP. This quantity reflects the sensitivity
of the video quality to the reception of the packet. As peers do not collect
detailed rate-distortion information about the stream they are transmitting
and as the exact state of the reception buffer of their descendants is not known
either, this sensitivity needs to be approximated. We choose to express D̃(n)
as the number of frames which will be affected if the frame Packet n belongs
to is not decoded correctly.

Figure 5.1 shows the importance D̃(n) of different frames for an open
encoding structure with periodic I frames. The importance of an I frame is
19, as its loss would affect the 16-frame GOP as well as the 3 preceding B
frames. The importance of the different P frames is 15, 11 and 7, depending
on their place in the GOP, and the importance of each B frame is 1. In
the P2P multicast scenario, CoDiO P2P schedules video streams packet by
packet, rather than frame by frame; in this case, the importance of a packet
corresponds to the importance of the frame it belongs to. In addition, packets
or frames are only considered by the scheduler as long as they are not past their

92 5 Video Streaming over a Peer-to-Peer Network

playout deadline. The algorithm does not, otherwise, take playout deadlines
or delay into account.

Fig. 5.1. Periodic encoding structure showing the importance of different frames.
The numbering reflects the display order of the pictures.

The role of the scheduler is not only to determine in which order to send
packets destined to a particular peer, but also, how to prioritize among the dif-
ferent descendants of a peer. Therefore, the importance of each packet should
also be adjusted to the number of descendants in the multicast tree that
would be affected by the loss or late arrival of this packet. Hence, the sched-
uler should adapt its decisions to the video content and to the structure of
the underlying multicast trees.

Our prioritization algorithm determines iteratively which is the next most
important packet by comparing the impact of each queued packet. For a
Packet n, addressed to Peer m, the impact is expressed as:

I(n, m) = D̃(n) ∗ (NumDescendants(m) + 1) (5.1)

In (5.1), NumDescendants(m) represents the number of peers to which
Packet n will be forwarded after reaching Peer m, this information is col-
lected by the control protocol, described in Chapter 4, when “hello” packets
are exchanged between neighboring peers to maintain the multicast trees.
D̃(n) is the importance we have just described.

Similarly to CoDiO light presented in Chapter 3, the prioritization al-
gorithm spaces successive transmissions to ensure congestion is not created
on the bottleneck link of the network path. In this case, the bottleneck is
the uplink of the forwarding peer, which we assume not to be shared with
other applications. Controlling the size of the queue of this link is, therefore,
straightforward. Transmissions are spaced based on the time needed for the
previous video packet to traverse the uplink. In addition, a small fraction
of the link throughput is reserved to account for control traffic. This is suf-
ficient to limit the delay of control packets. In our simulations, 20 kb/s of
throughput is set aside for this purpose regardless of the uplink bandwidth
of the peer. Please also note that when a packet retransmission is requested
by a descendant of the peer, the importance of the retransmission packet is
computed according to (5.1). Therefore, the scheduler does not systematically
favor retransmitted packets.

5.2 Peer-to-Peer CoDiO Scheduling 93

5.2.2 Distortion-Optimized Retransmission Scheduling

To improve the retransmission scheme described in Sec. 5.1, we suggest a
distortion-optimized approach similar to that described in Chapter 3 to re-
quest, in priority, the most important missing packets from the parents of the
peer, when it is partially disconnected from the multicast session. Different
from the CoDiO scheduler of Chapter 3, which is run by the video source, the
algorithm presented in this section is run by receivers which do not know in
advance the rate-distortion properties of the frames they will receive. There-
fore the distortion contribution of missing packets to the overall video quality
needs to be estimated.

Missing Frames

The information present in the headers of received video packets includes
packet numbers which makes missing packets easy to identify following a pa-
rent disconnection. However, it is important to relate the missing packets to
missing video frames in order to estimate which are the most critical in terms
of video quality. A list of missing frames is first determined by forming an
estimated mapping between missing packets and their corresponding frame
using additional information contained in the header of received video pack-
ets (packet number, frame number, number of packets in the frame, etc.).
For this purpose we use Algorithm 5.2.1, which estimates the frame number
of a missing packet, n. In Algorithm 5.2.1, each frame is a associated with
a variable denoted by initialized which indicates whether a packet for this
frame has been received. If it has, then the sequence number of the packets
composing the frame is known, and in particular, the first packet and the
last packet of the frame. The current frame, is the frame displayed by the
peer. In our simulations we use history window = 64 frames. The idea of the
algorithm is to find upper and lower bounds for the frame number correspond-
ing to Packet n. If during the process the frame number is not determined,
the average between the upper and lower bound is returned.

94 5 Video Streaming over a Peer-to-Peer Network

Algorithm 5.2.1: MapPacketToFrame(n)

comment: First, find an upper bound for the frame number.

upper bound← current frame
while (upper bound ≤ current frame + history window)

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

if (upper bound.initialized)

then

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

if (upper bound.first packet > n)
then break
else if (upper bound.first packet ≤ n ≤

upper bound.last packet)
then return (upper bound)

upper bound← upper bound + 1

comment: Then, find a lower bound for the frame number.

lower bound← upper bound
while lower bound > current frame

do

⎧⎪⎪⎨
⎪⎪⎩

if (lower bound.initialized)

then

{
if (lower bound.last packet < n)
then break

lower bound← lower bound− 1
if (upper bound.initialized and upper bound.first packet− 1 == n)
then return (upper bound− 1)
else if (lower bound.initialized and lower bound.last packet + 1 == n)
then return (lower bound + 1)
else

then return (� lower bound+upper bound
2

�)

Distortion Estimation

The scheduler uses its knowledge of the GOP structure to determine which
missing frame has the highest contribution to the total expected distortion.
Our approach is to estimate the decoded video distortion which would be
obtained if one of the different missing frames was retransmitted successfully.

We assume that previous frame concealment is used, as described in Ap-
pendix A, and that when a frame is lost the displayed picture is frozen until
the next decodable frame. Given a set of received frames, one of the missing
frames, k, and the encoding structure of the video, the scheduler constructs
a function ck(s) which indicates, based on the state of the current decoder
buffer, which frame will be shown at the time Frame s is due, if Frame k
is successfully recovered. As in Chapter 3, we let D(s, ck(s)) denote the dis-
tortion resulting from showing Frame ck(s) instead of Frame s. Each display
outcome is associated with the appropriate distortion value and the resulting
video quality is computed over several frames (in our simulations, the two
following GOPs):

Dk =
n∑

i=1

D(si, ck(si)) (5.2)

5.2 Peer-to-Peer CoDiO Scheduling 95

The most important frame to request for retransmission is simply the frame
which minimizes the decoded distortion:

k∗ = ArgminkDk (5.3)

Retransmission requests are sent out, packet by packet, in order of importance,
according to this metric.

0 5 10 15 20 25 30
0

500

1000

1500

|x−y|

M
ea

n
S

qu
ar

ed
 E

rr
or

Fig. 5.2. Estimated distortion as a function of the proximity of the frame used
for concealment. The encoding rate for the different sequences used to derive this
average is as follows. Container: 327 kb/s, Foreman: 339 kb/s, Mobile: 306 kb/s,
Mother & Daughter: 319 kb/s, News: 319 kb/s, Salesman: 311 kb/s.

As the peers do not know the exact properties of the video sequence they
are receiving, we estimate D(x, y) by a function Dest(x, y), computed by av-
eraging the results from different sequences and stored at each of the peers.
Dest(x, y) only depends on the difference x − y and captures the increase in
terms of MSE resulting from using a frame which is farther away for conceal-
ment. This distortion function is shown in Fig. 5.2. It is obtained by taking
the average of D(x, y), for |x − y| < 32, for all 0 ≤ x ≤ 287 and 0 ≤ y ≤ 287,
for the 6 sequences used throughout this book. The sequences are encoded
using the GOP structure illustrated in Fig. 5.1. The encoding rate for the
different sequences is indicated in the caption of the figure.

5.2.3 Scheduler Evaluation

In this section, we evaluate CoDiO P2P, the hybrid algorithm we have just
described, which combines the prioritization scheme run by sending peers and
the distortion-optimized retransmission request scheduler run by receivers. We
begin the analysis by comparing the performance of CoDiO P2P with CoDiO,
the scheduler analyzed in Chapter 3, which picks the best schedule among a
large set of schedules selected at random. This comparison is run for a unicast
scenario, with one sender and one receiver.

96 5 Video Streaming over a Peer-to-Peer Network

Experimental Setup

The experimental setup is the same as the one used in Chapter 3. We study
the performance of the scheduler for a network path with two hops, simulated
in ns-2. The first hop is a lossless high-bandwidth duplex 47.5 Mb/s T3 link
which is filled with a 22 Mb/s flow of exponential cross traffic. When gener-
ating cross traffic, the size of average traffic bursts is 30 kbytes. The second
hop is a 400 kb/s link. We consider a fixed packet loss rate of 2% over this
link. The total propagation delay over the channel is 52 ms.

For CoDiO, we keep the settings used in Chapter 3. For CoDiO P2P,
as this is a unicast scenario we do not consider several multicast trees. The
sender uses the prioritization scheme described in Sec. 5.2.1, and spaces its
transmissions to according to the 400 kb/s rate of its uplink. The receiver
requests retransmissions when it detects out-of-order arrivals. The number of
simultaneous unacknowledged retransmission requests is limited to 4, as this
was found to maximize performance. We present results for the case when
CoDiO P2P transmits video, frame by frame and packet by packet. Please
note that because of complexity, CoDiO is unable to optimize schedules for
a packetized video stream satisfactorily. It is, hence, limited to transmitting
entire frames.

Results are presented for six video sequences compressed using the coding
structure depicted in Fig. 5.1. The encoding rate for the different sequences is
as follows, Container: 327 kb/s, Foreman: 290 kb/s, Mobile: 342 kb/s, Mother
& Daughter: 319 kb/s, News: 358 kb/s, Salesman: 364 kb/s. Sequences are
looped 40 times when collecting experimental results. When a packet arrives
at the receiver after its playout deadline, the frame it belongs to is discarded
as if it were lost. In this case, the frame is concealed using previous frame con-
cealment, as described in detail in Appendix A. As in Chapter 3, the results
collected are the sender’s transmission rate, the decoded video quality, mea-
sured in PSNR and computed as explained in Appendix A, and the congestion
(i.e., the average end-to-end delay).

Performance comparison of CoDiO vs. CoDiO P2P

Results in Fig. 5.3, Fig. 5.4, and Fig. 5.5, show the performance of the CoDiO
scheduler compared to the CoDiO P2P scheduler in terms of video quality, rate
and congestion. Two curves are shown for CoDiO P2P, depending on whether
the scheduler sends video frames frame by frame or packet by packet.

When CoDiO P2P schedules entire video frames, despite its simplicity, its
performance remains within 2 dB of CoDiO. The performance gap is a con-
sequence of CoDiO P2P not using any delay distribution model and sending
and retransmitting frames as long as they are not past their playout deadline.
Therefore, the rate for CoDiO P2P decreases less than for CoDiO as the play-
out deadline is reduced. CoDiO P2P does not always pick the right frames to
transmit or retransmit and the performance is lower. However, the congestion

5.2 Peer-to-Peer CoDiO Scheduling 97

created over the link is lower than for CoDiO since CoDiO P2P can never
send frames back-to-back.

When CoDiO P2P schedules video frames, packet by packet, its perfor-
mance is as good or even better than CoDiO. Since it can retransmit smaller
portions of a frame, the rate for this scheduler is slightly lower as illustrated
in Fig. 5.4. As long as the playout deadline is larger than 600 ms, both CoDiO
and CoDiO P2P achieve maximum performance, for most of the sequences.
For lower playout deadline, CoDiO does not have time to retransmit I frames,
however, because CoDiO P2P operates on a per-packet basis, it can maintain
its performance for a longer range. The performance of CoDiO P2P in terms
of congestion is excellent, as illustrated in Fig. 5.4. CoDiO P2P spaces its
transmission and does not send more than an MTU size packet at a time.

Performance of the retransmission scheduler of CoDiO P2P

Results in Fig. 5.6, show the difference in performance when retransmission
packets are requested in a distortion-optimized fashion or are requested se-
quentially, according to their sequence number. In both cases, the sender per-
forms prioritized scheduling as described in Sec. 5.2.1. The gains for using
distortion-optimized retransmission scheduling are modest. They occur for
intermediate playout deadlines, when there is not enough time to request all
the missing packets. In this case, it is an advantage to request retransmission
of the most important packets first. Except for the sequence Foreman where
there is no gain, the performance improvement is 0.5 dB.

As an additional comment, since the performance peaks for a small number
of simultaneous retransmission requests (4 in this case), the scheduler used
at the sender is not powerful enough to schedule efficiently the transmission
of all the missing packets as well as that of the other video packets. This is
because the scheduler only refers to the encoding structure to determine the
impact of a packet and does not make use of the playout deadline nor the
delay distribution.

98 5 Video Streaming over a Peer-to-Peer Network

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

26

28

30

32

34

36

38

Playout deadline (s)

P
S

N
R

 (
dB

)

Container

CoDiO
CoDiO P2P MTUs
CoDiO P2P frames

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
25

26

27

28

29

30

31

32

33

34

35

Playout deadline (s)

P
S

N
R

 (
dB

)

Foreman

CoDiO
CoDiO P2P MTUs
CoDiO P2P frames

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
16

18

20

22

24

26

28

Playout deadline (s)

P
S

N
R

 (
dB

)

Mobile

CoDiO
CoDiO P2P MTUs
CoDiO P2P frames

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
25

30

35

40

45

Playout deadline (s)

P
S

N
R

 (
dB

)

Mother and Daughter

CoDiO
CoDiO P2P MTUs
CoDiO P2P frames

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

22

24

26

28

30

32

34

36

38

40

Playout deadline (s)

P
S

N
R

 (
dB

)

News

CoDiO
CoDiO P2P MTUs
CoDiO P2P frames

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
25

30

35

40

Playout deadline (s)

P
S

N
R

 (
dB

)

Salesman

CoDiO
CoDiO P2P MTUs
CoDiO P2P frames

Fig. 5.3. Video quality of CoDiO compared to CoDiO P2P for frame-by-frame trans-
mission and for packet-by-packet transmission. The encoding rate for the different
sequences is as follows, Container: 327 kb/s, Foreman: 290 kb/s, Mobile: 342 kb/s,
Mother & Daughter: 319 kb/s, News: 358 kb/s, Salesman: 364 kb/s.

5.2 Peer-to-Peer CoDiO Scheduling 99

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

400

450

500

Playout deadline (s)

T
ra

ns
m

itt
ed

 r
at

e
(k

b/
s)

Container

CoDiO
CoDiO P2P MTUs
CoDiO P2P frames

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

400

450

500

Playout deadline (s)

T
ra

ns
m

itt
ed

 r
at

e
(k

b/
s)

Foreman

CoDiO
CoDiO P2P MTUs
CoDiO P2P frames

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

400

450

500

Playout deadline (s)

T
ra

ns
m

itt
ed

 r
at

e
(k

b/
s)

Mobile

CoDiO
CoDiO P2P MTUs
CoDiO P2P frames

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

400

450

500

Playout deadline (s)

T
ra

ns
m

itt
ed

 r
at

e
(k

b/
s)

Mother and Daughter

CoDiO
CoDiO P2P MTUs
CoDiO P2P frames

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

400

450

500

Playout deadline (s)

T
ra

ns
m

itt
ed

 r
at

e
(k

b/
s)

News

CoDiO
CoDiO P2P MTUs
CoDiO P2P frames

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

400

450

500

Playout deadline (s)

T
ra

ns
m

itt
ed

 r
at

e
(k

b/
s)

Salesman

CoDiO
CoDiO P2P MTUs
CoDiO P2P frames

Fig. 5.4. Transmitted rate of CoDiO compared to CoDiO P2P for frame-by-frame
transmission and for packet-by-packet transmission. The encoding rate for the dif-
ferent sequences is as follows, Container: 327 kb/s, Foreman: 290 kb/s, Mobile:
342 kb/s, Mother & Daughter: 319 kb/s, News: 358 kb/s, Salesman: 364 kb/s.

100 5 Video Streaming over a Peer-to-Peer Network

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50

100

150

200

250

300

350

Playout deadline (s)

C
on

ge
st

io
n

(m
s)

Container

CoDiO
CoDiO P2P MTUs
CoDiO P2P frames

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50

100

150

200

Playout deadline (s)

C
on

ge
st

io
n

(m
s)

Foreman

CoDiO
CoDiO P2P MTUs
CoDiO P2P frames

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50

100

150

200

250

300

Playout deadline (s)

C
on

ge
st

io
n

(m
s)

Mobile

CoDiO
CoDiO P2P MTUs
CoDiO P2P frames

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50

100

150

200

250

Playout deadline (s)

C
on

ge
st

io
n

(m
s)

Mother and Daughter

CoDiO
CoDiO P2P MTUs
CoDiO P2P frames

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

60

80

100

120

140

160

180

200

220

240

260

Playout deadline (s)

C
on

ge
st

io
n

(m
s)

News

CoDiO
CoDiO P2P MTUs
CoDiO P2P frames

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
50

100

150

200

250

Playout deadline (s)

C
on

ge
st

io
n

(m
s)

Salesman

CoDiO
CoDiO P2P MTUs
CoDiO P2P frames

Fig. 5.5. Congestion of CoDiO compared to CoDiO P2P for frame-by-frame trans-
mission and for packet-by-packet transmission. The encoding rate for the different
sequences is as follows, Container: 327 kb/s, Foreman: 290 kb/s, Mobile: 342 kb/s,
Mother & Daughter: 319 kb/s, News: 358 kb/s, Salesman: 364 kb/s.

5.2 Peer-to-Peer CoDiO Scheduling 101

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

26

28

30

32

34

36

38

Playout deadline (s)

P
S

N
R

 (
dB

)

Container

CoDiO P2P
CoDiO P2P seq. retx

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

25

30

35

Playout deadline (s)

P
S

N
R

 (
dB

)

Foreman

CoDiO P2P
CoDiO P2P seq. retx

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
16

18

20

22

24

26

28

Playout deadline (s)

P
S

N
R

 (
dB

)

Mobile

CoDiO P2P
CoDiO P2P seq. retx

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
25

30

35

40

45

Playout deadline (s)

P
S

N
R

 (
dB

)

Mother and Daughter

CoDiO P2P
CoDiO P2P seq. retx

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

22

24

26

28

30

32

34

36

38

40

Playout deadline (s)

P
S

N
R

 (
dB

)

News

CoDiO P2P
CoDiO P2P seq. retx

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
25

30

35

40

Playout deadline (s)

P
S

N
R

 (
dB

)

Salesman

CoDiO P2P
CoDiO P2P seq. retx

Fig. 5.6. Performance of CoDiO P2P for distortion-optimized retransmission re-
quests and content-oblivious sequential retransmissions. The encoding rate for the
different sequences is as follows. Container: 244 kb/s, Foreman: 257 kb/s, Mobile:
237 kb/s, Mother & Daughter: 282 kb/s, News: 319 kb/s, Salesman: 311 kb/s.

102 5 Video Streaming over a Peer-to-Peer Network

5.3 Experimental Results

The simulation setup used for this section is described in detail in Sec 4.2.1,
in Chapter 4. This setup is used to simulate a realistic network of hundreds of
dynamic peers which serves to evaluate the performance of the P2P system.

5.3.1 Video Sessions

We collect results for the 6 sequences used throughout this book, encoded with
H.264 between 250 and 340 kb/s. These 10-second video clips are looped to
obtain 30 minute multicast sessions. When packets miss their playout deadline
they are discarded by the peers. As described in Appendix A, video decoding
errors are concealed by freezing the last correctly decoded video frame until
the next decodable frame. Video quality is recorded at the different peers and
serves as the main evaluation metric. It is computed during the time the peers
are connected to the session. To avoid biases due to transient behavior, we
exclude the first 100 seconds of the experiments, when computing average
video quality.

The video coding structure is that described in Fig. 5.1. In most cases, the
video source transmits video traffic over 4 multicast trees and experiments are
run with a playout deadline of 2 seconds.

5.3.2 Diversity

The results shown in Fig. 5.7 illustrate the benefits of using multiple multicast
trees. The video quality averaged over the 300 peers is reported on the left
vertical axis, and the percentage of control traffic exchanged on the network
for different number of trees is reported on the right vertical axis. The latter
is computed by taking the ratio between the amount of control traffic on the
network and the total amount of traffic (composed of video and control traffic,
as there is no cross traffic). Please note that control traffic is also analyzed in
more detail in Chapter 4.

In this experiment, the encoding structure illustrated in Fig. 5.1 is used to
compress the video. The encoding rate for the different sequences is indicated
in the caption of the figure. The peers run the video streaming protocol de-
scribed in Sec. 5.1 to forward the video packets. Missing packets are requested
sequentially and simultaneous retransmission requests are limited to 2 per pa-
rent. The aggregate amount of available throughput requested by the peers
to join the multicast is 350 kb/s (i.e., 350 kb/s per tree for 1 tree, 175 kb/s
per tree for 2 trees, etc.). As explained in Chapter 4 this rate leads to stable
multicast trees. In addition, the playout deadline for all the peers is fixed at
2.0 s, which, for our system, is not a stringent constraint.

As the number of trees increases, although the total rate necessary to
transmit the entire compressed video remains constant, the rate of the video
sub-streams forwarded along each tree decreases linearly. Hence, the amount

5.3 Experimental Results 103

of free uplink bandwidth required to support an additional child on any par-
ticular tree is smaller; this finer granularity leads to better use of the available
network bandwidth. In this experiment, the network cannot achieve good per-
formance with only 1 multicast tree. In this case, as indicated in Tab. 4.3, more
than half of the peers are free-riders, as their uplink does not allow them to
forward the video stream. As a result, many peers are not able to connect
to the multicast trees. This causes control traffic to increase as probe mes-
sages are exchanged for longer periods, it also decreases the amount of video
traffic exchanged, as unconnected peers do not receive the streams and do
not forward them. This explains why the control overhead is so high. For 2
or more trees, finer granularity leads to additional available uplink resources.
In particular, there are no more free-riders and the available resources are
sufficient to sustain high video quality. This is the prevalent factor in deter-
mining a suitable number of trees. The results in Fig. 5.7 show that when
more multicast trees are used, the control traffic needed to build and main-
tain the trees increases linearly. In addition, the increased frequency of parent
disconnections causes more losses which results in a slightly lower video qual-
ity when no retransmissions are allowed. A high video quality can, however,
be maintained by using retransmissions.

These results are further analyzed in Fig. 5.8 which shows the percentage
of lost frames for the same experiment. The percentage of frozen frames is
very high when there is only one tree, as the protocol is not able to maintain
a stable multicast tree when there are many free-riders. In the absence of
retransmissions, the percentage of frozen frames increases as a function of
the number of trees. As expected, this increase is approximately linear, as
the frequency of parent disconnections increases on average linearly with the
number of trees.

5.3.3 CoDiO P2P

Distortion-Optimized Retransmission Scheduling

We first study the influence of retransmission scheduling on the decoded video
quality. Specifically, we analyze to what extent retransmissions mitigate the
quality degradation which occurs when the parent of a peer leaves. To illus-
trate this particular aspect of the system we choose the following scenario. We
let 300 peers join the multicast and remain connected. When a steady state
is reached, a host close to the source is disconnected. In this experiment, 4
multicast trees are used to transmit the video and the maximum number of
unacknowledged retransmission requests on each tree is 2. The performance
is shown for 2 video sequences in Fig. 5.9 and in Fig. 5.10, as a function of
time, in terms of the video quality. The average video quality is taken over all
299 connected peers. The percentage of peers connected to all 4 trees is also
recorded and shown on the right of the figure. The rate for the two sequences
is 282 kb/s and 306 kb/s, respectively. The cumulative amount of available

104 5 Video Streaming over a Peer-to-Peer Network

1 2 3 4 5 6 7 8

24

26

28

30

32

34

36

38

40

Number of trees

P
S

N
R

 (
dB

)

No retransmission
With retransmissions

1 2 3 4 5 6
0%

5%

10%

15%

P
er

ce
nt

ag
e

of
 c

on
tr

ol
 o

ve
rh

ea
d

Container

Overhead no retransmission
Overhead w/ retransmissions

1 2 3 4 5 6 7 8

24

26

28

30

32

34

36

38

40

Number of trees

P
S

N
R

 (
dB

)

No retransmission
With retransmissions

1 2 3 4 5 6
0%

5%

10%

15%

P
er

ce
nt

ag
e

of
 c

on
tr

ol
 o

ve
rh

ea
d

Foreman

Overhead no retransmission
Overhead w/ retransmissions

1 2 3 4 5 6 7 8

17

19

21

23

25

27

29

31

33

Number of trees

P
S

N
R

 (
dB

)

No retransmission
With retransmissions

1 2 3 4 5 6
0%

5%

10%

15%

P
er

ce
nt

ag
e

of
 c

on
tr

ol
 o

ve
rh

ea
d

Mobile

Overhead no retransmission
Overhead w/ retransmissions

1 2 3 4 5 6 7 8
26

28

30

32

34

36

38

40

42

44

Number of trees

P
S

N
R

 (
dB

)

No retransmission
With retransmissions

1 2 3 4 5 6
0%

5%

10%

15%

P
er

ce
nt

ag
e

of
 c

on
tr

ol
 o

ve
rh

ea
d

Mother and Daughter

Overhead no retransmission
Overhead w/ retransmissions

1 2 3 4 5 6 7 8

24

26

28

30

32

34

36

38

40

42

Number of trees

P
S

N
R

 (
dB

)

No retransmission
With retransmissions

1 2 3 4 5 6
0%

5%

10%

15%

P
er

ce
nt

ag
e

of
 c

on
tr

ol
 o

ve
rh

ea
d

News

Overhead no retransmission
Overhead w/ retransmissions

1 2 3 4 5 6 7 8

24

26

28

30

32

34

36

38

40

Number of trees

P
S

N
R

 (
dB

)

No retransmission
With retransmissions

1 2 3 4 5 6
0%

5%

10%

15%

P
er

ce
nt

ag
e

of
 c

on
tr

ol
 o

ve
rh

ea
d

Salesman

Overhead no retransmission
Overhead w/ retransmissions

Fig. 5.7. Decoded video quality and overhead for P2P video streaming over differ-
ent numbers of multicast trees. The encoding rate for the sequences is as follows.
Container: 283 kb/s, Foreman: 290 kb/s, Mobile: 306 kb/s, Mother & Daughter:
282 kb/s, News: 319 kb/s, Salesman: 311 kb/s.

5.3 Experimental Results 105

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

Number of trees

F
ro

ze
n

fr
am

es
 (

%
)

Container

No retransmission
With retransmissions

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

Number of trees

F
ro

ze
n

fr
am

es
 (

%
)

Foreman

No retransmission
With retransmissions

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

Number of trees

F
ro

ze
n

fr
am

es
 (

%
)

Mobile

No retransmission
With retransmissions

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

Number of trees

F
ro

ze
n

fr
am

es
 (

%
)

Mother & Daughter

No retransmission
With retransmissions

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

Number of trees

F
ro

ze
n

fr
am

es
 (

%
)

News

No retransmission
With retransmissions

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

18

20

Number of trees

F
ro

ze
n

fr
am

es
 (

%
)

Salesman

No retransmission
With retransmissions

Fig. 5.8. Percentage of frozen frames for different numbers of multicast trees.
The encoding rate for the sequences is as follows. Container: 283 kb/s, Foreman:
290 kb/s, Mobile: 306 kb/s, Mother & Daughter: 282 kb/s, News: 319 kb/s, Sales-
man: 311 kb/s.

106 5 Video Streaming over a Peer-to-Peer Network

throughput requested by the peers to join the multicast is 350 kb/s. The
playout deadline for all the peers is fixed to 2.0 s. We compare the retrans-
mission request scheduling of CoDiO P2P to the case where no retransmission
is allowed. Results are also shown for the case where retransmission requests
for missing packets are issued sequentially, according to their decoding dead-
line. For all three cases shown in Fig. 5.9 and in Fig. 5.10, at the sender, the
scheduler described in Sec. 5.2.1 performs prioritized scheduling between the
different queued packets, and only the retransmission method employed by
receivers changes.

The host disconnection occurs at time 0, and takes about 1 s to be detected.
This can be deduced from the graphs, as connectivity is reported directly by
the peers. As illustrated in Fig. 5.9 and in Fig. 5.10, about 40% of the hosts, in
one case, and 25%, in the other, are affected by the disconnection. At time 4
s, all the affected peers have recovered. Similar behavior is observed with and
without retransmissions and differences are due to the various traffic patterns
resulting from different retransmission policies. The video quality during the
rejoin time, however, is very different for the three cases. For CoDiO P2P,
the video quality remains almost constant over time, as a large majority of
missing frames which contribute significantly to decoded video distortion are
recovered. As a comparison, for the results shown in Fig. 5.9, the quality drops
during the reconnection time by approximately 6 dB when no retransmission
are allowed and by 1 dB for the content-oblivious retransmission scheduler.
For the results shown in Fig. 5.10, the overall video quality degradation is less
severe as the disconnection affects fewer peers. However, due to the motion
of the sequence, missing even a B frame leads to a PSNR drop. The quality
loss is reduced by half with CoDiO P2P compared to the content-oblivious
retransmission scheme and by more than half compared to the case with no
retransmission.

Table 5.1 shows the average decoded video quality obtained as the maxi-
mum number of unacknowledged retransmission packets per parent is varied.
Results are collected for 6 sequences. In this experiment there are 300 peers
and video is transmitted over four multicast trees. The playout deadline is
fixed to 2.0 s. The encoding structure illustrated in Fig. 5.1 is used to com-
press the video.

The numbers reported in the table show the gain in terms of average
video quality which can be achieved through the use of retransmissions. As
illustrated, with one or two simultaneous retransmission requests per tree,
gains reach 1.2 dB on average. In addition, we stress that the impact of visual
quality, is much larger. The small performance gap is due to the fact that
during the 30-minute multicast, the number of disconnections affecting each
peer is limited. This is further confirmed by the low percentage of frozen
frames which is reported in Tab. 5.2. The performance degrades slightly for 8
retransmissions. This indicates the scheduler at the sender is overwhelmed by
the number of packets and does not efficiently prioritize traffic. As previously
noted in Sec. 5.2.3, the fact that the performance peaks for a small number

5.3 Experimental Results 107

0 2 4 6 8 10

0

2

4

6

8

P
S

N
R

 d
ro

p
(d

B
)

0 2 4 6 8 10
40

60

80

100

C
on

ne
ct

iv
ity

 (
%

)
0 2 4 6 8 10

0

2

4

6

8

P
S

N
R

 d
ro

p
(d

B
)

0 2 4 6 8 10
40

60

80

100

C
on

ne
ct

iv
ity

 (
%

)

0 2 4 6 8 10

0

2

4

6

8

Time (s)

P
S

N
R

 d
ro

p
(d

B
)

0 2 4 6 8 10
40

60

80

100

Time (s)

C
on

ne
ct

iv
ity

 (
%

)

Fig. 5.9. Video quality drop and percentage of peers connected to all 4 trees
for no retransmission (top), content-oblivious retransmissions (middle), distortion-
optimized retransmissions (bottom). Results shown for the video sequence Mother
and Daughter.

of simultaneous retransmission requests shows that the scheduler used at the
sender is not powerful enough to handle the transmission of all the missing
packets in addition to the other video packets. This is, due to the fact that the
scheduler only refers to the encoding structure to determine the impact of a
packet and does not make use of the playout deadline nor of the transmission
delay between the peers.

Throughput Over-Provisioning

As discussed in Chapter 3, throughput over-provisioning is necessary for low-
latency streaming, especially for sequences where the instantaneous rate tends
to vary. We study this effect in the P2P setting and analyze the influence of
scheduling on over-provisioning in this section. We run an experiment where
the cumulative amount of available throughput requested by the peers to join
the multicast is 350 kb/s and we observe the decoded quality resulting from
streaming video encoded at different rates. In this experiment, the encoding

108 5 Video Streaming over a Peer-to-Peer Network

0 2 4 6 8 10

0

5

10

P
S

N
R

 d
ro

p
(d

B
)

0 2 4 6 8 10
40

60

80

100

C
on

ne
ct

iv
ity

 (
%

)

0 2 4 6 8 10

0

5

10

P
S

N
R

 d
ro

p
(d

B
)

0 2 4 6 8 10
40

60

80

100

C
on

ne
ct

iv
ity

 (
%

)

0 2 4 6 8 10

0

5

10

Time (s)

P
S

N
R

 d
ro

p
(d

B
)

0 2 4 6 8 10
40

60

80

100

Time (s)

C
on

ne
ct

iv
ity

 (
%

)

Fig. 5.10. Video quality drop and percentage of peers connected to all 4 trees
for no retransmission (top), content-oblivious retransmissions (middle), distortion-
optimized retransmissions (bottom). Results shown for the video sequence Mobile.

structure illustrated in Fig. 5.1 is used to compress the video. Results are
shown in Fig. 5.11, for different playout deadlines, for CoDiO P2P and for the
sequential scheduler described in Sec. 5.1. For this second scheduler retrans-
mission requests for missing packets are issued sequentially, according to the
packet sequence number. Results show the decoded video quality, averaged
over the 300 peers, the horizontal axis shows the rate at which the video is
encoded. In this experiment 4 multicast trees are used to carry video traffic.

When the playout deadline is not too stringent (1.4 s, in this experiment)
no over-provisioning is necessary. Indeed, for all the sequences, except for
Container, the video quality is close to the maximal video quality, as long as
the encoding rate remains below 350 kb/s. In this case the number of frames
lost to frame freezes is only around 2%. When the encoding rate exceeds
350 kb/s, the peers need to forward video packets at a rate which exceeds the
throughput reserved for their descendants. In this case, although the average
available throughput on the network is well above 350 kb/s2, the uplink of
some of the peers will be overwhelmed by video traffic which explains the

2 The average throughput of the peers is 914 kb/s; it can be derived from Tab. 4.3.

5.3 Experimental Results 109

Table 5.1. Average decoded video quality for different numbers of retransmissions.
For each sequence, the best result is shown in bold. The encoding rate for the
sequences is as follows. Container: 283 kb/s, Foreman: 290 kb/s, Mobile: 306 kb/s,
Mother & Daughter: 282 kb/s, News: 311 kb/s, Salesman: 319 kb/s.

Simultaneous PSNR (dB)
retransmissions

per tree Container Foreman Mobile M.&D. News Salesman

0 35.1 33.35 23.59 39.83 37.5 34.99
1 36.41 33.9 25.62 40.91 38.4 35.92
2 36.44 33.94 25.75 40.97 37.85 35.94
3 36.4 33.92 25.67 40.92 38.41 35.79
8 36.38 33.89 25.73 40.6 38.15 35.86

Table 5.2. Percentage of frozen frames. For each sequence, the best result is shown
in bold. The encoding rate for the sequences is as follows. Container: 283 kb/s,
Foreman: 290 kb/s, Mobile: 306 kb/s, Mother & Daughter: 282 kb/s, News: 311 kb/s,
Salesman: 319 kb/s.

Simultaneous Frozen frames
retransmissions

per tree Container Foreman Mobile M.&D. News Salesman

0 4% 8% 17% 8% 6% 8%
1 1% 2% 2% 3% 2% 3%
2 1% 1% 1% 2% 4% 2%
3 1% 2% 2% 2% 2% 3%
8 1% 2% 1% 3% 3% 3%

dip in performance for all the sequences. When the playout deadline is tighter
(1.0 s, in this experiment), over-provisioning is necessary as can be seen by the
performance degradation for the sequential scheduler which happens at lower
rates. This is in line with the results reported in Chapter 3. Again, we stress
that the average available throughput on the network is well above 350 kb/s,
but congestion may occur on any path linking the source of the multicast to
one of the peers. This effect dominates and leads to degraded performance.
The effect of congestion is most severe for the sequence Foreman. This is
due to the instantaneous rate variation which are more significant for this
sequence, as illustrated in the curves shown in Appendix A. Again, this is

110 5 Video Streaming over a Peer-to-Peer Network

in line with the results presented in Chapter 3. For a playout deadline of
1.0 s, the use of CoDiO P2P reduces the need for over-provisioning. For all
the sequences, except for Foreman the performance is within 0.5 dB of the
maximum performance. CoDiO P2P drops the least important frames when
congestion occurs. In this case, the number of frame freezes for the different
peers is around 3% or 4%. This is sufficient to maintain high video quality.

100 150 200 250 300 350 400
32

33

34

35

36

37

38
Container

Rate (kb/s)

P
S

N
R

 (
dB

)

No prioritization, delay 1.4s
CoDiO P2P, delay 1.4s
No prioritization, delay 1.0s
CoDiO P2P, delay 1.0s

150 200 250 300 350 400
27

28

29

30

31

32

33

34
Foreman

Rate (kb/s)

P
S

N
R

 (
dB

)

No prioritization, delay 1.4s
CoDiO P2P, delay 1.4s
No prioritization, delay 1.0s
CoDiO P2P, delay 1.0s

100 150 200 250 300 350 400
19

20

21

22

23

24

25

26

27
Mobile

Rate (kb/s)

P
S

N
R

 (
dB

)

No prioritization, delay 1.4s
CoDiO P2P, delay 1.4s
No prioritization, delay 1.0s
CoDiO P2P, delay 1.0s

100 150 200 250 300 350 400
36

37

38

39

40

41

42
Mother and Daughter

Rate (kb/s)

P
S

N
R

 (
dB

)

No prioritization, delay 1.4s
CoDiO P2P, delay 1.4s
No prioritization, delay 1.0s
CoDiO P2P, delay 1.0s

150 200 250 300 350 400
35

35.5

36

36.5

37

37.5

38

38.5

39
News

Rate (kb/s)

P
S

N
R

 (
dB

)

No prioritization, delay 1.4s
CoDiO P2P, delay 1.4s
No prioritization, delay 1.0s
CoDiO P2P, delay 1.0s

100 150 200 250 300 350 400 450
32

32.5

33

33.5

34

34.5

35

35.5

36

36.5
Salesman

Rate (kb/s)

P
S

N
R

 (
dB

)

No prioritization, delay 1.4s
CoDiO P2P, delay 1.4s
No prioritization, delay 1.0s
CoDiO P2P, delay 1.0s

Fig. 5.11. Rate-distortion performance of CoDiO P2P and of the to a non-
prioritized sequential scheduler for different encoding rates.

Another type of over-provisioning is also necessary to ensure stability of
the trees built by the protocol. This is discussed and analyzed in Chapter 4.

5.3 Experimental Results 111

Influence of the Playout Deadline

We analyze further the benefits of CoDiO P2P by studying its performance
as a function of the playout deadline. We compare the optimized scheduler to
the simpler scheduler described in Sec. 5.1. The results presented in Fig. 5.12
are for a network of 75 peers. In this experiment, the encoding structure
illustrated in Fig. 5.1 is used to compress the video. The encoding rate for the
sequences is indicated in the figure caption. Four multicast trees are used to
carry video traffic. For both schedulers, the maximum number of simultaneous
retransmission requests is 2 per parent. Please note, however, that in both
cases, retransmission requests are distortion-optimized.

The graphs indicate the average decoded video quality for the peers, for
different playout deadlines. When the latency constraint is lax, both schedulers
perform very closely for all the video sequences. For shorter playout deadlines,
CoDiO P2P maintains higher performance than the sequential scheduler. For
example, for an end-to-end latency constraint of 0.8 s, the gains for CoDiO
P2P is between 1.0 and 2.0 dB for the different sequences, except News for
which there is no significant difference. In other words, CoDiO P2P extends
the limits of the system in terms of latency. The video quality drop-off for
CoDiO P2P occurs for latencies lower by 15%, on average, and a latency reduc-
tion of up to 20% is achieved for the Foreman sequence. Note, that sequences
with more instantaneous rate variation - namely Foreman and Mother and
Daughter - and sequences for which the encoding rate is higher - e.g., Sales-
man, lead to higher performance improvement. This is due to the higher level
of congestion which they generate on the network.

Results for the same experiment are presented in Fig. 5.13, for a network
of 300 peers. As the multicast trees carrying the video traffic are longer in
this case (6 hops, on average, compared to 4 hops for 75 peers), the average
end-to-end delay between the video source and the different peers is higher. As
a consequence, the video quality drop-off occurs for longer playout deadlines
and reducing congestion is even more important, as late packet arrivals are
more difficult to avoid. This leads to an increase in the overall performance
improvement achieved by CoDiO P2P, particularly noticeable for Salesman
and Foreman for which a latency reduction of up to 40% is observed.

112 5 Video Streaming over a Peer-to-Peer Network

0.4 0.6 0.8 1 1.2 1.4 1.6

22

24

26

28

30

32

34

36

38

40
Container

Playout deadline (s)

P
S

N
R

 (
dB

)

No prioritization
CoDiO P2P

0.4 0.6 0.8 1 1.2 1.4 1.6

22

24

26

28

30

32

34

Foreman

Playout deadline (s)

P
S

N
R

 (
dB

)

No prioritization
CoDiO P2P

0.4 0.6 0.8 1 1.2 1.4 1.6
15

20

25

30
Mobile

Playout deadline (s)

P
S

N
R

 (
dB

)

No prioritization
CoDiO P2P

0.4 0.6 0.8 1 1.2 1.4 1.6
25

30

35

40

45
Mother & Daughter

Playout deadline (s)

P
S

N
R

 (
dB

)

No prioritization
CoDiO P2P

0.4 0.6 0.8 1 1.2 1.4 1.6
20

22

24

26

28

30

32

34

36

38

40
News

Playout deadline (s)

P
S

N
R

 (
dB

)

No prioritization
CoDiO P2P

0.4 0.6 0.8 1 1.2 1.4 1.6
20

22

24

26

28

30

32

34

36

38

40
Salesman

Playout deadline (s)

P
S

N
R

 (
dB

)

No prioritization
CoDiO P2P

Fig. 5.12. Performance of CoDiO P2P compared to a non-prioritized sequential
scheduler for 75 peers. Results shown for 6 sequences. The encoding rate for the
sequences is as follows. Container: 283 kb/s, Foreman: 290 kb/s, Mobile: 342 kb/s,
Mother & Daughter: 282 kb/s, News: 311 kb/s, Salesman: 364 kb/s.

5.3 Experimental Results 113

0.4 0.6 0.8 1 1.2 1.4 1.6

22

24

26

28

30

32

34

36

38

40
Container

Playout deadline (s)

P
S

N
R

 (
dB

)

No prioritization
CoDiO P2P

0.4 0.6 0.8 1 1.2 1.4 1.6

22

24

26

28

30

32

34

Foreman

Playout deadline (s)

P
S

N
R

 (
dB

)

No prioritization
CoDiO P2P

0.4 0.6 0.8 1 1.2 1.4 1.6
15

20

25

30
Mobile

Playout deadline (s)

P
S

N
R

 (
dB

)

No prioritization
CoDiO P2P

0.4 0.6 0.8 1 1.2 1.4 1.6
25

30

35

40

45
Mother & Daughter

Playout deadline (s)

P
S

N
R

 (
dB

)

No prioritization
CoDiO P2P

0.4 0.6 0.8 1 1.2 1.4 1.6
20

22

24

26

28

30

32

34

36

38

40
News

Playout deadline (s)

P
S

N
R

 (
dB

)

No prioritization
CoDiO P2P

0.4 0.6 0.8 1 1.2 1.4 1.6
20

22

24

26

28

30

32

34

36

38

40
Salesman

Playout deadline (s)

P
S

N
R

 (
dB

)

No prioritization
CoDiO P2P

Fig. 5.13. Performance of CoDiO P2P compared to a non-prioritized sequential
scheduler for 300 peers. Results shown for 6 sequences. The encoding rate for the
sequences is as follows. Container: 283 kb/s, Foreman: 290 kb/s, Mobile: 342 kb/s,
Mother & Daughter: 282 kb/s, News: 311 kb/s, Salesman: 364 kb/s.

114 5 Video Streaming over a Peer-to-Peer Network

5.4 Chapter Summary

In this chapter we describe an adaptive algorithm for streaming video from a
single source to a large population of peers through the use of their forwarding
capability. The different peers organize themselves in a distributed fashion
in multiple multicast trees over which complementary portions of the video
stream are transmitted. The system benefits from using more than one tree
for distribution, as this leads to better use of the throughput of the peers.
Most of the benefits of diversity is achieved by using two multicast trees in
our simulation setup.

We study the performance of a congestion-distortion optimized video
scheduler, CoDiO P2P, which combines two adaptive algorithms. The sender
handles the prioritization of transmissions to its different descendants and fa-
vors, in particular, important video frames and peers forwarding video to large
numbers of descendants. It spaces its transmissions to mitigate congestion cre-
ated on its uplink. The receiver is a content-aware retransmission scheduler
which is able to maintain video quality when a peer is partially disconnected
from the network. This scheduler proceeds by requesting in priority packets
which will lead to higher video distortion reduction. It distributes retrans-
mission requests among its different parents with a limit on the additional
burden created on their uplink. Compared to a simpler scheduler which does
not use information on the content it is forwarding, CoDiO P2P improves the
performance for low-latency streaming and achieves gains in terms of decoded
video quality of up to 4 dB. It also maintains high video quality for playout
deadlines which are 15-40% shorter. Our recent work [213], shows that CoDiO
P2P also performs well compared to robust transport techniques which do not
adapt to video content. In particular CoDiO P2P outperforms both multiple
description coding and FEC for video streaming at high rates and with low
latency.

6

Conclusions and Future Work

6.1 Conclusions

This book addresses the problem of video streaming with low latency over
throughput-constrained networks and, in particular, over peer-to-peer (P2P)
networks. The solutions we suggest span different parts of a video streaming
system architecture, from the encoding, to the transport.

When throughput is limited, determining a suitable encoding rate is nec-
essary to achieve sufficient video quality while avoiding self-inflicted conges-
tion which may overwhelm the bottleneck of the network. Our rate-distortion
model captures accurately the impact of rate on the end-to-end performance
of the system and predicts the amount of over-provisioning needed to satisfy
the constraints of low-latency streaming. To achieve very low latencies, we
consider a congestion-distortion optimized scheduler which determines which
packets to send, and when, to achieve high video quality while limiting self-
congestion. Results indicate the benefits of using congestion to evaluate the
performance of different schedules. Compared to rate-distortion optimization
the scheduler reduces queuing delay as it shapes traffic to produce a network-
friendly bitstream which minimizes large delay spikes on the bottleneck link.

Similar ideas can also be adapted to P2P video multicast where a video
source transmits a stream synchronously to a large population of viewers
by making use of the forwarding capacity of the connected peers. We study
the advantages of congestion-distortion optimized packet scheduling for P2P
networks and show how it can be performed, with very low complexity, by a
scheme which combines an algorithm at the sender to prioritize transmissions
destined to different peers and a retransmission scheduler at the receiver which
sends distortion-optimized retransmission requests from a peer to its different
forwarders. Experimental results for networks of several hundred peers show
the benefit of adapting to the network topology and to the video content for
low latencies.

116 6 Conclusions and Future Work

6.2 Future Work

One of the contributions of this book is to illustrate the importance of con-
sidering congestion as a metric for media scheduling. It would be particularly
well-suited to evaluate streaming systems which are based on wavelet video
coding as they are usually designed for bandwidth-limited systems with vary-
ing throughput. Scheduling algorithms based on congestion and distortion
should be investigated for these different types of media representations.

The SPPM P2P control protocol which we describe in Chapter 4 could
be improved. An active tree management protocol which prevents low band-
width peers from attaching to the highest parts of the tree would increase
the throughput of the P2P network. Adjusting the frequency of hello message
exchanges would reduce the total amount of control overhead. The join and
rejoin latencies could be further reduced by changing the attachment process
and not forcing peers to collect replies for all the probe packets they trans-
mit. The results of recent deployments of SPPM at Stanford University will
also help understand the limits of P2P video streaming, notably in terms of
latency.

The growing popularity of video streaming over P2P networks makes it
an exciting research topic particularly since adaptive video streaming in these
environments is still in its early stages. Many good algorithms for server-client
streaming systems can, and should, be adapted to P2P networks and will lead
to interesting results. For example, adaptive media playout techniques would
be a natural fit to these networks where end-to-end delay is likely to fluctuate
and where reliability is difficult to guarantee. Efficient layered video coding
schemes such as H.264 SVC would enable better adaptation to heterogeneous
peers. Another possible direction is to study hybrid systems where a small
set of servers is combined with a P2P network to alleviate the cost of the
system in terms of infrastructure while providing quality of service guarantees,
such as low startup delays or constant video quality. The scalability of these
hybrid systems might even outperform that of P2P systems by providing more
efficient and stable data distribution paths.

A

Video Experiments

We present in this appendix information pertaining to the video streaming
experiments carried out in this work. We first present the video encoding
structure chosen to compress sequences, then describe the latency-constrained
video streaming process, and explain how we compute the peak-signal-to-
noise-ratio (PSNR) which we use throughout the book as a video quality
metric. Finally, we provide information on the 6 test sequences.

A.1 Video Streaming

A.1.1 Encoding Structures

The temporally layered scheme shown in Fig. A.1 is chosen to encode the
video. For this open Group of Pictures (GOP), the first temporal layer is
composed of I frames. The second temporal layer is composed of P frames.
We restrict P frames to use as a reference the P frame or I frame preceding
them in display order, as illustrated in the figure. The last layer is composed
of B frames. We restrict the B frames to use as reference their two neighboring
P frames or I frames1. This ensures good error resilience properties and allows
to easily scale down the frame rate by 2 or even 4 if needed.

Fig. A.1. Encoding structure used for video streaming experiments with periodic
I pictures. GOP length = 16

Table A.1 shows the other H.264 coding parameters chosen to generate the
compressed sequences.
1 Please note that these restrictions are not dictated by the H.264 standard.

118 A Video Experiments

Table A.1. H.264 encoding parameters

Hadamard transform on
Search range 16 pixels
Number of reference frames 5
Hierarchical B frames off
Entropy coding CAVLC
Loop filter on
Slices per picture 1
Rate-distortion optimization on
Rate control off

A.1.2 Latency-Constrained Video Streaming

In the video streaming experiments presented in this work, compressed video
packets are made available at a sender, at a given time and need to be de-
coded shortly after at the receiver. Figure A.2, illustrates this process for the
encoding structure shown in Fig. A.1.

As illustrated, the playout deadline is defined by the time between which
the first frame of the sequence is made available at the sender and the time it
is due at the decoder. Due to the dependencies between video frames, I frames
and P frames are decoded 3 time slots before they are displayed. For the first
frame of the sequence and for the B frames, the display and decoding times
are identical.

A.1.3 Error-Resilient Decoding

We denote by s(x, y, t) the luminance component of the original video signal,
sampled on a regular grid of X by Y pixels, and by F the number of frames of
the sequence. In the experiments we present, the video is compressed by an
H.264 encoder and transmitted over a packet erasure channel. We denote by
sdec the decoded signal, recovered by the receiver.

Due to losses or to delay, all the data necessary to decode perfectly Frame
t may not be available by the playout deadline of this frame. In this case, the
decoder applies previous frame concealment:

sdec(x, y, t) = sdec(x, y, t − 1) (A.1)

Previous frame concealment continues until a frame is received and decoded
with no errors. This results in “freezing” Frame t − 1 over this time interval.
The same process is also used to decode the color components of the video
signal.

A.1 Video Streaming 119

Fig. A.2. Illustration of latency-constrained video streaming. Two time axes are
shown. The left axis shows the time at which frames are made available to the
sender for transmission. The right axis shows when the different frames are due
at the receiver. Frames are numbered, for clarity, in their display order. The first
time slot at the sender and at the receiver is an exception, the rest of the process
is periodic. The number of frames played by second is denoted by numFps. The
playout deadline is denoted by playout.

A.1.4 Quality Metric

Throughout the book, we compute PSNR, as follows. First, the mean squared
error of the luminance signal is computed, frame by frame:

MSE(t) =
1

XY

X∑
x=1

Y∑
y=1

(s(x, y, t) − sdec(x, y, t))2 (A.2)

For each frame, the PSNR can then be derived from the MSE:

120 A Video Experiments

PSNR(t) = 10 log10

2552

MSE(t)
(A.3)

Finally, the average PSNR is computed by taking the average over all the
frames of the sequence.

PSNR =
1
F

F∑
t=1

PSNR(t) (A.4)

In the literature, the PSNR is sometimes computed after, computing the av-
erage of the MSE for all frames. In practice, however, there is no difference
between these two definitions [214].

To ensure stable results, we loop the sequences at least 40 times and con-
sider long channel traces, rather than repeating the experiments over mul-
tiple channel realizations2. This is motivated by the fact that the channels
we consider are throughput-limited and have time-varying bottleneck queues.
Considering long experiments is necessary to evaluate the performance of the
system in steady state.

2 The length of the simulations is indicated in the related sections of Chapters 3
and 5.

A.2 Video Sequences 121

A.2 Video Sequences

Throughout this book, 6 standard test sequences are used to collect experi-
mental results. In this section we provide additional information on the video
sequences, focusing, in particular on their rate-distortion characteristics.

A.2.1 Container

Fig. A.3. Example picture of the sequence Container.

0 50 100 150 200 250 300
0

50

100

150

200

Frame number

F
ra

m
e

si
ze

 (
kb

)

Container

QP = 27

0 50 100 150 200 250 300
0

50

100

150

200

Frame number

F
ra

m
e

si
ze

 (
kb

)

Container

QP = 22

Fig. A.4. Left frame sizes for encoding rate 327 kb/s. Right: frame sizes for encoding
rate 682 kb/s.

• Sequence description: video sequence captured with a fixed camera
showing a container ship. The motion of the ship is slow and smooth. A
small beating flag and a flight of birds, in the foreground, increase slightly
the activity of the sequence.

• Spatial resolution: CIF, 288 x 352
• Temporal resolution: 30 frames per second
• Number of frames: 288 frames

122 A Video Experiments

Table A.2. Rate-distortion characteristics of the Container sequence, encoded with
periodic I frames following the encoding structure shown in Fig. A.1.

QP PSNR (dB) Rate (kb/s)
20 41.92 896.64
21 41.25 782.61
22 40.64 681.92
23 39.87 581.98
24 39.22 502.59
25 38.71 442.45
26 37.87 372.62
27 37.24 327.01
28 36.62 283.42
29 35.97 244.13
30 35.38 214.72
31 34.85 191.19
32 34.19 164.65
33 33.66 145.02
34 33.04 128.30
35 32.40 112.16
36 31.83 98.18
37 31.32 88.68
38 30.61 77.39
39 30.08 69.80
40 29.52 62.07
41 28.91 55.34
42 28.31 49.29

A.2 Video Sequences 123

A.2.2 Foreman

Fig. A.5. Example picture of the sequence Foreman.

0 50 100 150 200 250 300
0

50

100

150

200

Frame number

F
ra

m
e

si
ze

 (
kb

)

Foreman

QP = 31

0 50 100 150 200 250 300
0

50

100

150

200

Frame number

F
ra

m
e

si
ze

 (
kb

)

Foreman

QP = 26

Fig. A.6. Left frame sizes for encoding rate 339 kb/s. Right: frame sizes for encoding
rate 677 kb/s.

• Sequence description: sequence captured with a hand-held device,
showing a talking head and a construction site. Motion is due to changes
in facial expression and to camera motion which includes panning.

• Spatial resolution: CIF, 288 x 352
• Temporal resolution: 30 frames per second
• Number of frames: 288 frames

124 A Video Experiments

Table A.3. Rate-distortion characteristics of the Foreman sequence, encoded with
periodic I frames following the encoding structure shown in Fig. A.1.

QP PSNR (dB) Rate (kb/s)
20 41.82 1739.98
21 41.15 1507.27
22 40.51 1293.22
23 39.78 1098.14
24 39.12 933.65
25 38.58 814.04
26 37.80 676.52
27 37.18 586.97
28 36.57 502.58
29 35.92 435.35
30 35.31 380.01
31 34.76 338.99
32 34.08 290.11
33 33.54 256.76
34 32.92 227.37
35 32.30 198.99
36 31.71 175.43
37 31.19 160.11
38 30.53 139.37
39 29.99 125.67
40 29.42 113.28
41 28.75 101.31
42 28.22 90.99

A.2 Video Sequences 125

A.2.3 Mobile

Fig. A.7. Example picture of the sequence Mobile.

0 50 100 150 200 250 300
0

50

100

150

200

Frame number

F
ra

m
e

si
ze

 (
kb

)

Mobile

QP = 38

0 50 100 150 200 250 300
0

50

100

150

200

Frame number

F
ra

m
e

si
ze

 (
kb

)

Mobile

QP = 33

Fig. A.8. Left frame sizes for encoding rate 339 kb/s. Right: frame sizes for encoding
rate 677 kb/s.

• Sequence description: active sequence with camera zoom and pan. Mov-
ing objects in the foreground and camera motion cause the background to
be covered and uncovered.

• Spatial resolution: CIF, 288 x 352
• Temporal resolution: 30 frames per second
• Number of frames: 288 frames

126 A Video Experiments

Table A.4. Rate-distortion characteristics of the Mobile sequence, encoded with
periodic I frames following the encoding structure shown in Fig. A.1.

QP PSNR (dB) Rate (kb/s)
20 40.83 4517.24
21 39.98 4045.62
22 39.16 3612.61
23 38.22 3146.58
24 37.32 2746.84
25 36.60 2442.04
26 35.58 2055.70
27 34.76 1783.24
28 33.93 1518.26
29 33.03 1271.54
30 32.23 1098.17
31 31.56 955.70
32 30.71 799.03
33 30.04 686.19
34 29.31 600.18
35 28.56 511.31
36 27.88 443.47
37 27.30 400.08
38 26.55 342.11
39 25.92 305.98
40 25.28 267.12
41 24.57 237.07
42 23.94 207.83

A.2 Video Sequences 127

A.2.4 Mother & Daughter

Fig. A.9. Example picture of the sequence Mother & Daughter.

0 50 100 150 200 250 300
0

20

40

60

80

100

120

Frame number

F
ra

m
e

si
ze

 (
kb

)

Mother & Daughter

QP = 23

0 50 100 150 200 250 300
0

20

40

60

80

100

120

Frame number

F
ra

m
e

si
ze

 (
kb

)

Mother & Daughter

QP = 19

Fig. A.10. Left frame sizes for encoding rate 368 kb/s. Right: frame sizes for
encoding rate 687 kb/s.

• Sequence description: video conference sequence captured with a fixed
camera. There are two people in the foreground, one of which is talking,
and a fixed background. The sequence displays limited motion mostly due
to changes in facial expression and to arm motion of one of the characters.

• Spatial resolution: CIF, 288 x 352
• Temporal resolution: 30 frames per second
• Number of frames: 288 frames

128 A Video Experiments

Table A.5. Rate-distortion characteristics of the Mother & Daughter sequence,
encoded with periodic I frames following the encoding structure shown in Fig. A.1.

QP PSNR (dB) Rate (kb/s)
19 44.48 686.54
20 43.94 566.96
21 43.42 493.74
22 42.89 426.66
23 42.28 367.70
24 41.74 318.67
25 41.29 281.55
26 40.54 239.32
27 39.97 211.81
28 39.37 184.62
29 38.76 161.18
30 38.12 142.32
31 37.57 126.80
32 36.92 109.50
33 36.38 97.08
34 35.75 85.61
35 35.09 75.52
36 34.58 65.85
37 34.13 59.38
38 33.44 51.22
39 33.09 45.61
40 32.48 40.13
41 31.88 35.32
42 31.36 31.37

A.2 Video Sequences 129

A.2.5 News

Fig. A.11. Example picture of the sequence News.

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

Frame number

F
ra

m
e
 s

iz
e
 (

kb
)

News

QP = 27

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

Frame number

F
ra

m
e
 s

iz
e
 (

kb
)

News

QP = 21

Fig. A.12. Left frame sizes for encoding rate 356 kb/s. Right: frame sizes for
encoding rate 702 kb/s.

• Sequence description: typical news sequence, captured with a fixed
camera, featuring an anchorman and an anchorwoman whose facial ex-
pression change moderately. Most of the activity of the sequence is caused
by a large screen displaying an excerpt of a ballet with camera pan, in the
background. The screen fills approximately one fifth of the picture.

• Spatial resolution: CIF, 288 x 352
• Temporal resolution: 30 frames per second
• Number of frames: 288 frames

130 A Video Experiments

Table A.6. Rate-distortion characteristics of the News sequence, encoded with
periodic I frames following the encoding structure shown in Fig. A.1.

QP PSNR (dB) Rate (kb/s)
20 43.71 781.75
21 43.14 701.54
22 42.56 629.96
23 41.88 558.17
24 41.27 499.11
25 40.76 453.21
26 39.99 396.06
27 39.36 357.87
28 38.70 319.14
29 37.98 282.57
30 37.32 255.58
31 36.72 231.66
32 35.96 203.80
33 35.36 182.84
34 34.69 164.98
35 33.96 145.40
36 33.27 129.36
37 32.68 118.51
38 31.88 103.48
39 31.29 94.22
40 30.61 83.59
41 29.88 74.78
42 29.27 66.93

A.2 Video Sequences 131

A.2.6 Salesman

Fig. A.13. Example picture of the sequence Salesman.

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

Frame number

F
ra

m
e

si
ze

 (
kb

)

Salesman

QP = 27

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

Frame number

F
ra

m
e

si
ze

 (
kb

)

Salesman

QP = 24

Fig. A.14. Left frame sizes for encoding rate 364 kb/s. Right: frame sizes for
encoding rate 627 kb/s.

• Description: sequence captured with a fixed camera. The only motion is
due to the limited motion of the character in the foreground. The back-
ground is fixed.

• Spatial resolution: CIF, 288 x 352
• Temporal resolution: 30 frames per second
• Number of frames: 288 frames

132 A Video Experiments

Table A.7. Rate-distortion characteristics of the Salesman sequence, encoded with
periodic I frames following the encoding structure shown in Fig. A.1.

QP PSNR (dB) Rate (kb/s)
20 41.25 1452.18
21 40.54 1176.61
22 39.90 967.55
23 39.18 770.83
24 38.58 626.91
25 38.06 524.45
26 37.38 427.17
27 36.79 364.28
28 36.23 311.00
29 35.63 265.20
30 35.06 233.44
31 34.53 207.62
32 33.87 178.64
33 33.35 158.38
34 32.72 139.84
35 32.07 121.71
36 31.48 106.83
37 30.99 97.23
38 30.29 84.23
39 29.76 75.59
40 29.14 66.22
41 28.52 57.71
42 27.96 50.64

References

1. “Peer-to-peer in 2005,” Online report, available at
http://www.cachelogic.com/research/2005 slide07.php, seen on Apr. 2nd
2006.

2. Advanced Video Coding for Generic Audiovisual services, ITU-T Recommen-
dation H.264 - ISO/IEC 14496-10(AVC), ITU-T and ISO/IEC JTC 1, 2003.

3. ITU-T, Video Codec for Audiovisual Services at px64 kbit/s, ITU-T Recom-
mendation H.261, Version 1: Nov. 1990; Version 2: Mar. 1993.

4. ISO/IEC JTC 1, ”Coding of moving pictures and associated audio for digital
storage media at up to about 1.5 Mbit/s Part 2: Video,” ISO/IEC 11172-2
(MPEG-1), Mar. 1993.

5. ITU-T and ISO/IEC JTC 1, Generic coding of moving pictures and associated
audio information Part 2: Video, ITU-T Recommendation H.262 ISO/IEC
13818-2 (MPEG-2), Nov. 1994.

6. ITU-T, Video coding for low bit rate communication, ITUT Recommendation
H.263; version 1, Nov. 1995; version 2, Jan. 1998; version 3, Nov. 2000.

7. ISO/IEC JTC1, Coding of audio-visual objects Part 2: Visual, ISO/IEC
14496-2 (MPEG-4 visual version 1), April 1999; Amendment 1 (version 2),
February, 2000; Amendment 4 (streaming profile), January, 2001.

8. Y. Wang, J. Ostermann, and Y.-Q. Zhang, Video Processing and Communica-
tions. Prentice Hall, New Jersey, 2001.

9. A. Luthra, G. Sullivan, and T. Wiegand (Eds.), “Special Issue on the
H.264/AVC Video Coding Standard,” IEEE Circuits and Systems Magazine,
vol. 13, no. 7, Jul. 2003.

10. J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira,
T. Stockhammer, and T. Wedi, “Video Coding with H.264/AVC: Tools, Perfor-
mance, and Complexity,” IEEE Circuits and Systems Magazine, vol. 4, no. 1,
pp. 7–28, Jan. 2004.

11. B. Erol, A. Dumitras, F. Kossentini, A. Joch, and G. Sullivan, MPEG-4,
H.264/AVC, and MPEG-7: New Standards for the Digital Video Industry, in
Handbook of image and video processing, 2nd Ed. Academic Press, 2005.

12. S. Srinivasan, P. Hsu, T. Holcomb, K. Mukerjee, S. Regunathan, B. Lin,
J. Liang, M.-C. Lee, and J. Ribas-Corbera, “Windows Media Video 9: Overview
and Applications,” Signal Processing: Image Communications, vol. 19, no. 9,
pp. 851–875, Oct. 2004.

134 References

13. G. Srinivasan and S. Regunathan, “An overvriew of VC-1,” Proc. of SPIE,
Visual Communications and Image Processing, Beijing, China, vol. 5960, pp.
720–728, Jul. 2005.

14. L. Yu, F. Yi, J. Dong, and C. Zhang, “Overview of AVS-video: Tools, Perfor-
mance and Complexity,” Proc. of SPIE, Visual Communications and Image
Processing, Beijing, China, vol. 5960, pp. 679–689, Jul. 2005.

15. T. Wedi and H. Musmann, “Motion- and Aliasing-Compensated Prediction for
Hybrid Video Coding,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 13, no. 7, pp. 577–586, Jul. 2003.

16. D. Marpe, H. Schwarz, and T. Wiegand, “Context-Adaptive Binary Arithmetic
Coding in the H.264/AVC Video Compression Standard,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 620–636, Jul.
2003.

17. “H.264/AVC Reference Software,” http://iphome.hhi.de/suehring/
tml/download/, seen on Aug. 28 2005.

18. G. Sullivan and T. Wiegand, “Video Compression - From Concepts to the
H.264/AVC Standard,” Proc. of the IEEE, Special Issue on Advances in Video
Coding and Delivery, vol. 93, no. 1, pp. 18–31, Jan. 2005.

19. G. Sullivan, P. Topiwala, and A. Luthra, “The H.264/AVC Advanced Video
Coding Standard: Overview and Introduction to the Fidelity Range Exten-
sions,” SPIE Annual Conference on Applications of Digital Image Process-
ing XXVII, Special Session on Advances in the New Emerging Standard
H.264/AVC, pp. 454–474, Aug. 2004.

20. H. Schwarz, D. Marpe, and T. Wiegand, “MCTF and Scalability Extension
of H.264/AVC,” Proc. Picture Coding Symposium (PCS 2004), San Francisco,
CA, USA, Dec. 2004.

21. ——, “SNR-Scalable Extension of H.264/AVC,” Proc. IEEE Int. Conference
on Image Processing (ICIP), Singapore, Oct. 2004.

22. B. Girod, “The Efficiency of Motion-Compensating Prediction for Hybrid Cod-
ing of Video Sequences,” IEEE Journal on Selected Areas in Communications,
vol. 5, no. 7, pp. 1140–1154, Aug. 1987.

23. ——, “Motion-Compensating Prediction with Fractional Pel Accuracy,” IEEE
Transactions on Communications, vol. 41, pp. 604–612, Apr. 1993.

24. ——, “Efficiency Analysis of Multi-Hypothesis Motion-Compensated Predic-
tion for Video Coding,” IEEE Trans. Image Processing, vol. 9, no. 2, pp. 173–
183, Feb. 2000.

25. M. Flierl and B. Girod, “Multihypothesis Motion Estimation for Video Cod-
ing,” Proc. of the Data Compression Conference, Snowbird, USA, Mar. 2001.

26. ——, “Multihypothesis Motion-Compensated Prediction with Forward Adap-
tive Hypothesis Switching,” Proc. Picture Coding Symposium, Seoul, Korea,
Apr. 2001.

27. M. H. Flierl, Video Coding with Superimposed Motion-Compensated Signals,
Ph.D. Dissertation, University of Erlangen, 2003.

28. G. Cook, J. Prades-Nebot, and E. Delp, “Rate-Distortion Bounds for Motion-
Compensated Rate Scalable Video Coders,” Proc. Int. Conference on Image
Processing (ICIP), Singapore, pp. 3121–3124, Oct. 2004.

29. J. Prades-Nebot, G. Cook, and E. Delp, “Analysis of the Efficiency of SNR-
Scalable Strategies for Motion Compensated Video Coders,” Proc. Int. Con-
ference on Image Processing (ICIP), Singapore, pp. 3109–3112, Oct. 2004.

References 135

30. Z. He and S. Mitra, “A Unified Rate-Distortion Analysis Framework for Trans-
form Coding,” IEEE Transactions on Circuits and Systems for Video Technol-
ogy, vol. 11, no. 12, pp. 1221–1236, dec 2001.

31. K. Stuhlmüller, N. Färber, M. Link, and B. Girod, “Analysis of Video Trans-
mission over Lossy Channels,” IEEE Journal on Selected Areas in Communi-
cations, vol. 18, no. 6, pp. 1012–32, June 2000.

32. R. Zhang, S. Regunathan, and K. Rose, “End-to-end Distortion Estimation for
RD-based Robust Delivery of Pre-compressed Video,” Thirty-Fifth Asilomar
Conference on Signals, Systems and Computers, Pacific Grove, USA, Nov.
2001.

33. G. Cote, S. Shirani, and F. Kossentini, “Optimal Mode Selection And Syn-
chronization For Robust Video Communication Over Error-Prone Networks,”
IEEE Journal on Selected Areas in Communications, vol. 18, no. 6, pp. 952–
956, Jun. 2000.

34. Y. Eisenberg, F. Zhai, C. Luna, T. Pappas, R. Berry, and A. Katsaggelos,
“Variance-Aware Distortion Estimation for Wireless Video Communications,”
Proc. Int. Conference on Image Processing (ICIP), Barcelona, Spain, vol. 1,
pp. 89–92, Sep. 2003.

35. Y. Liang, J. Apostolopoulos, and B. Girod, “Analysis of Packet Loss for Com-
pressed Video: Does Burst-Length Matter?” Proc. IEEE Int. Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Hong Kong, China.

36. J. Chakareski, J. Apostolopoulos, W. t. Tan, S. Wee, and B. Girod, “Distortion
Chains for Predicting for Video Distortion for General Loss Patterns,” Proc.
IEEE Int. Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Montreal, Canada, May 2004.

37. W. Zhu, M.-T. Sun, L.-G. Chen, and T. Sikora (Eds.), “Special Issue on Ad-
vances in Video Coding and Delivery,” Proc. of the IEEE, vol. 93, no. 1, Jan.
2005.

38. W. Zeng, K. Nahrstedt, P. Chou, A. Ortega, P. Frossard, and H. Yu (Eds.),
“Special issue on streaming media,” IEEE Transactions on Multimedia, vol. 6,
no. 2, Apr. 2004.

39. B. Girod, M. Kalman, Y. Liang, and R. Zhang, “Advances in Channel-adaptive
Video Streaming,” Wireless Communications and Mobile Computing, vol. 6,
no. 2, pp. 549–552, Sep. 2002.

40. M. Civanlar, A. Luthra, S. Wenger, and W. Zhu (Eds.), “Special Issue on
Streaming Video,” IEEE Transactions on Circuits and Systems for Video Tech-
nology, vol. 11, no. 3, Mar. 2001.

41. J. Apostolopoulos and M. Conti (Eds.), “Special Issue on Multimedia over
Broadband Wireless Networks,” IEEE Networks, vol. 20, no. 2, pp. 1721–1737,
Mar. 2006.

42. B. Girod, I. Lagenduk, Q. Zhang, and W. Zhu (Eds.), “Special Issue on Ad-
vances in Wireless Video,” IEEE Wireless Communications, vol. 12, no. 4, Aug.
2005.

43. R. Chandramouli, R. Shorey, P. Srimani, X. Wang, and H. Yu (Eds.), “Special
Issue on Recent Advances in Wireless Multimedia,” Journal on Selected Areas
in Communications, vol. 21, no. 10, pp. 1721–1737, Dec. 2003.

44. Y. Wang and Q.-F. Zhu, “Error Control and Concealment for Video Com-
munication: a Review,” Proc. of the IEEE, vol. 86, no. 5, pp. 974–997, May
1998.

136 References

45. Y. Wang, S. Wenger, J. Wen, and A. Katsaggelos, “Error Resilient Video Cod-
ing Techniques,” IEEE Signal Processing Magazine, vol. 17, no. 4, pp. 61–82,
Jul. 2000.

46. B. Girod and N. Färber, Wireless Video, in A. Reibman, M.-T. Sun (Eds.),
Compressed Video over Networks,. Marcel Dekker, 1999.

47. S. Wenger, “H.264/AVC over IP,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 13, no. 7, pp. 645–656, Jul. 2003.

48. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
Architecture for Differentiated Services,” IETF RFC 2475, Dec. 1998.

49. R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource ReSer-
Vation Protocol (RSVP),” IETF RFC 2205, Sep. 1997.

50. G. Cote and F. Kossentini, “Optimal Intra Coding of Blocks for Robust
Communication over the Internet,” Signal Processing: Image Communication,
vol. 15, no. 1-2, pp. 25–34, Sep. 1999.

51. R. Zhang, S. Regunathan, and K. Rose, “Video Coding with Optimal
Inter/Intra-Mode Switching for Packet Loss Resilience,” IEEE Journal on Se-
lected Areas in Communications, vol. 18, no. 6, pp. 966–976, Jun. 2000.

52. T. Stockhammer, M. Hannuksela, and T. Wiegand, “H.264/AVC in Wireless
Environments,” IEEE Transactions on Circuits and Systems, vol. 13, no. 7,
pp. 657–673, Jul. 2003.

53. S. Lin, S. Mao, and Y. Wang, “A Reference Picture Selection Scheme for Video
Transmission over Ad Hoc Networks using Multiple Paths,” Proc. IEEE Int.
Conference on Multimedia and Expo (ICME), Tokyo, Japan, Aug. 2001.

54. Y. J. Liang, M. Flierl, and B. Girod, “Low Latency Video Transmission over
Lossy Packet Networks using Rate-Distortion Optimized Reference Picture Se-
lection,” Proc. Int. Conference on Image Processing (ICIP), Rochester, USA,
pp. 181–184, Sep. 2002.

55. Y. Liang, E. Setton, and B. Girod, “Network-Adaptive Video Communication
Using Packet Path Diversity and Rate-Distortion Optimized Reference Picture
Selection,” Journal of VLSI Signal Processing Systems for Signal, Image, and
Video Technology, vol. 41, no. 3, Nov. 2005.

56. W. Tu and E. Steinbach, “Proxy-Based Reference Picture Selection for Real-
Time Video Transmission Over Mobile Networks,” Proc. IEEE Int. Conference
on Multimedia and Expo (ICME), Amsterdam, The Netherlands, pp. 309–312,
Jul. 2005.

57. E. Setton, Y. Liang, and B. Girod, “Adaptive Multiple Description Video
Streaming over Multiple Channels with Active Probing,” Proc. IEEE Int. Con-
ference on Multimedia and Expo (ICME), Baltimore, USA, vol. 1, pp. 509–512,
Jul. 2003.

58. Y. Liang and B. Girod, “Low-latency Streaming of Pre-Encoded Video Us-
ing Channel-Adaptive Bitstream Assembly,” Proc. IEEE Int. Conference on
Multimedia and Expo (ICME), Lausanne, Switzerland, pp. 873–876, Jul. 2002.

59. E. Setton, A. Shionozaki, and B. Girod, “Real-time Streaming of Prestored
Multiple Description Video with Restart,” Proc. IEEE Int. Conference on Mul-
timedia and Expo (ICME), Taipe, Taiwan, vol. 2, pp. 1323–1326, jul 2004.

60. H.-K. Cheung, Y.-L. Chan, and W.-C. Siu, “Reference Picture Selection in an
Already MPEG Encoded Bitstream,” Proc. IEEE Int. Conference on Image
Processing (ICIP), Genoa, Italy, vol. 1, pp. 793–796, Sep. 2005.

References 137

61. A. Albanese, J. Blömer, J. Edmonds, M. Luby, and M. Sudan, “Priority Encod-
ing Transmission,” IEEE Trans. Information Theory, vol. 42, pp. 1737–1744,
Nov. 1996.

62. U. Horn, K. Stuhlmüller, M. Link, and B. Girod, “Robust Internet Video Trans-
mission Based on Scalable Coding and Unequal Error Protection,” Signal Pro-
cessing: Image Communication, vol. 15, no. 1-2, pp. 77–94, Sep. 1999.

63. A. Mohr, E. Riskin, and R. Ladner, “Unequal Loss Protection: Graceful Degra-
dation of Image Quality over Packet Erasure Channels through Forward Er-
ror Correction,” IEEE Journal on Selected Areas in Communications, vol. 18,
no. 6, pp. 819–829, Jun. 2000.

64. W. Zhu, Q. Zhang, and Y.-Q. Zhang, “Network-Adaptive Rate Control with
Unequal Loss Protection for Scalable Video over Internet,” Proc. Int. Symp.
Circuits and Systems, Sydney, Australia, May 2001.

65. R. Puri and K. Ramchandran, “Multiple Description Source Coding through
Forward Error Correction Codes,” Proc. IEEE Asilomar Conf. Signals, Sys-
tems, and Computers, Asilomar, USA, vol. 1, pp. 342–246, Oct. 1999.

66. D. Turner and K. Ross, “Optimal Streaming of Layered-Encoded Multimedia
Presentations,” Proc. IEEE Int. Conf. on Multimedia and Expo (ICME), New
York, USA, Jul. 2000.

67. T. Tian, A. Li, J. Wen, and J. Villasenor, “Prority Dropping in Network Trans-
mission of Scalable Video,” Proc. IEEE Int. Conf. on Image Processing (ICIP),
Vancouver, Canada, vol. 3, pp. 400–403, Oct. 2000.

68. S. Dumitrescu, Z. Wang, and X. Wu, “Globally Optimal Uneven Error-
Protected Packetization of Scalable Code Streams,” Proc. of the Data Com-
pression Conference, Snowbird, USA, pp. 73–82, Sep. 2002.

69. J. Boyce, “Packet Loss Resilient Transmission of MPEG Video over the Inter-
net,” Signal Processing: Image Communication, vol. 15, no. 1-2, pp. 7–24, Sep.
1999.

70. M. Hannuksela, Y.-K. Wang, and M. Gabbouj, “Isolated Regions in Video
Coding,” IEEE Trans. on Multimedia, vol. 6, no. 2, pp. 259–267, Apr. 2004.

71. P. Baccichet, S. Rane, A. Chimienti, and B. Girod, “Robust Low-Delay Video
Transmission using H.264/AVC Redundant Slices and Flexible Macroblock Or-
dering,” Proc. IEEE Int. Conference on Image Processing (ICIP), to appear,
Oct. 2007.

72. S. Wicker, Error Control Systems for Digital Communication and Storage.
Prentice Hall, 1995.

73. B. Dempsey, J. Liebeherr, and A. Weaver, “On Retransmission-Based Error
Control for Continuous Media Traffic in Packet-Switching Networks,” Com-
puter Networks and ISDN Systems Journal, vol. 28, no. 5, pp. 719–736, Mar.
1996.

74. C. Papadopoulos and G. Parulkar, “Retransmission-Based Error Control for
Continuous Media Applications,” Proceedings of the Sixth International Work-
shop on Network and Operating System Support for Digital Audio and Video
(NOSSDAV), Zushi, Japan, pp. 5–12, Jul. 1996.

75. M. Podolsky, S. McCanne, and M. Vetterli, “Soft ARQ for Layered Streaming
Media,” Tech. Rep. UCB/CSD-98-1024, University of California, Computer
Science Division, Berkeley, Nov. 1998.

76. Z. Miao and A. Ortega, “Optimal Scheduling for Streaming of Scalable Media,”
Proc. IEEE Asilomar Conf. Signals, Systems, and Computers, Pacific Grove,
USA, vol. 2, pp. 1357–1362, Nov. 2000.

138 References

77. P. Chou and Z. Miao, “Rate-Distortion Optimized Streaming of Packetized
Media,” Microsoft Research Technical Report MSR-TR-2001-35, Feb. 2001.

78. ——, “Rate-Distortion Optimized Streaming of Packetized Media,” IEEE
Transactions on Multimedia, vol. 8, no. 2, pp. 390–404, Apr. 2006.

79. M. Kalman, P. Ramanathan, and B. Girod, “Rate-Distortion Optimized
Streaming with Multiple Deadlines,” Proc. Int. Conference on Image Process-
ing (ICIP), Barcelona, Spain, vol. 5, pp. 3145–3148, Sep. 2003.

80. J. Chakareski, P. Chou, and B. Girod, “Rate-Distortion Optimized Streaming
from the Edge of the Network,” Proc. IEEE Fifth Workshop on Multimedia
Signal Processing (MMSP), St. Thomas, Virgin Islands, Dec. 2002.

81. J. Chakareski and B. Girod, “Rate-distortion Optimized Media Streaming with
Rich Requests,” Proc. Packet Video Workshop, Irvine, USA, Dec. 2004.

82. M. Röder, J. Cardinal, and R. Hamzaoui, “On the Complexity of Rate-
Distortion Optimal Streaming of Packetized Media,” Proc. Data Compression
Conference, Snowbird, USA, Mar. 2004.

83. S. Wee, W. Tan, J. Apostolopoulos, and M. Etoh, “Optimized Video Streaming
for Networks with Varying Delay,” Proc. IEEE Int. Conference on Multimedia
and Expo (ICME), Lausanne, Switzerland, Aug. 2002.

84. J. Chakareski, J. Apostolopoulos, S. Wee, W. Tan, and B. Girod, “Rate-
Distortion Hint Tracks for Adaptive Video Streaming,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 15, no. 10, pp. 1257–1269,
Oct. 2005.

85. M. Kalman and B. Girod, “Rate-Distortion Optimized Video Streaming with
Multiple Deadlines for Low Latency Applications,” Proc. Packet Video Work-
shop, Irvine, USA, Dec. 2004.

86. ——, “Rate-distortion Optimized Video Streaming Using Conditional Packet
Delay Distributions,” Proc. IEEE Int. Workshop on Multimedia Signal Pro-
cessing (MMSP), Siena, Italy, Sep. 2004.

87. J. Chakareski and B. Girod, “Rate-Distortion Optimized Packet Scheduling
and Routing for Media Streaming with Path Diversity,” Proc. IEEE Data
Compression Conference, Snowbird, USA, Apr. 2003.

88. R. Thoma and M. Bierling, “Motion Compensated Interpolation Considering
Covered and Uncovered Background,” Signal Processing: Image Communica-
tion, vol. 1, no. 2, pp. 192–212, Oct. 1989.

89. J. K. Su and R. Mersereau, “Motion-Compensated Interpolation of Untrans-
mitted Frames in Compressed Video,” Proc. 30th Asilomar Conf. on Signals
Systems and Computers, Asilomar, USA, pp. 100–104, Nov. 1996.

90. P. Csillag and L. Boroczky, “Enhancement of Video Data using Motion-
Compensated Postprocessing Techniques,” Proc. Int. Conference on Acoustics,
Speech, and Signal Processing, Munich, Germany, vol. 4, pp. 2897–2900, Apr.
1997.

91. E. Quacchio, E. Magli, G. Olmo, P. Baccichet, and A. Chimienti, “Enhancing
Whole-Frame Error Concealment with an Intra Motion Vector Estimator in
H.264/AVC,” Proc. Int. Conference on Acoustics, Speech, and Signal Process-
ing, Philadelphia, USA, pp. 329–332, Mar. 2005.

92. G. Conklin, G. Greenbaum, K. Lillevold, A. Lippman, and Y. Reznik, “Video
Coding for Streaming Media Delivery on the Internet,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 11, no. 3, pp. 269–281, Mar.
2001.

References 139

93. M. Allman, V. Paxson, and W. R. Stevens, “TCP Congestion Control,” RFC
2581, Apr. 1999.

94. M. Handley, S. Floyd, J. Pahdye, and J. Widmer, “TCP Friendly Rate Control
(TFRC): Protocol Specification,” RFC 3448, Jan. 2003.

95. D. Bansal and H. Balakrishnan, “Binomial Congestion Control,” Proc. IEEE
INFOCOM, Anchorage, USA, Apr. 2001.

96. H. Balakrishnan and R. Katz, “Explicit Loss Notification and Wireless Web
Performance,” Proc. Globecom, Sydney, Australia, Nov. 1998.

97. M. Sharma, D. Katabi, R. Pan, and B. Prabhakar, “A General Multiplexed
ECN Channel and its use for Wireless Loss Notification,” Proc. ACM SIG-
COMM, Karlsruhe, Germany, Aug. 2003.

98. A. Markopoulou, E. Setton, M. Kalman, and J. Apostolopoulos, “Wise Video:
Improving Rate-controlled Video Streaming Using in-band Wireless Loss No-
tification,” Proc. IEEE Int. Conference on Multimedia and Expo (ICME),
Taipei, Taiwan, Jul. 2004.

99. M. Chen and A. Zakhor, “Rate Control for Streaming Video over Wireless,”
Proc. Infocom, Hong-Kong, China, Mar. 2004.

100. H. Kanakia, P. Mishra, and A. Reibman, “An Adaptive Congestion Control
Scheme for Real Time Packet Video Transport,” IEEE/ACM Transactions on
Networking, vol. 3, no. 6, pp. 671–682, Dec. 1995.

101. J. Webb and K. Oehler, “A Simple Rate-Distortion Model, Parameter Esti-
mation, and Application to Real-Time Rate Control for DCT-Based Coders,”
Proc. Int. Conference on Image Processing (ICIP), Santa Barbara, USA, vol. 2,
pp. 13–16, oct 1997.

102. K. H. Yang, A. Jacquin, and N. Jayant, “A Normalized Rate-Distortion Model
for H.263-Compatible Codecs and its Application to Quantizer Selection,”
Proc. Int. Conference on Image Processing, Santa Barbara, USA, vol. 2, pp.
41–44, oct 1997.

103. L.-J. Lin and A. Ortega, “Bit-Rate Control using Piecewise Approximated
Rate-Distortion Characteristics,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 8, no. 4, pp. 446–459, aug 1998.

104. J. Ribas-Corbera and S. Lei, “Rate Control in DCT Video Coding for Low-
Delay Communications,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 9, no. 1, pp. 172–185, feb 1999.

105. Z. Li, F. Pan, K. Lim, X. Lin, and S. Rahardja, “Adaptive Rate Control for
H.264,” Proc. IEEE Int. Conference on Image Processing (IEEE), Singapore,
pp. 745–748, Oct. 2004.

106. K. Lee, R. Puri, T. Kim, K. Ramchandran, and V. Bharghavan, “An Integrated
Source Coding and Congestion Control Framework for Video Streaming in the
Internet,” Proc. of the IEEE INFOCOM, Tel Aviv, Israel, Mar. 2000.

107. N. Feamster, D. Bansal, and H. Balakrishnan, “On the Interactions Between
Layered Quality Adaptation and Congestion Control for Video Streaming,”
Proc. 11th Int. Packet Video Workshop, Kyongju, Korea, May 2001.

108. T. Schierl and T. Wiegand, “H.264/AVC Rate Adaption for Internet Stream-
ing,” Proc. Int. Packet Video Workshop, Irvine, USA, Dec. 2004.

109. T. Nguyen and J. Ostermann, “Streaming and Congestion Control using Scal-
able Video Coding Based on H.264/AVC,” Proc. 15th Int. Packet Video Work-
shop, Hangzhou, China, pp. 749–754, Apr. 2006.

140 References

110. I. Ahmad, X. Wei, Y. Sun, and Y.-Q. Zhang, “Video Transcoding: an Overview
of Various Techniques and Research Issues,” IEEE Transactions on Multime-
dia, vol. 7, no. 5, pp. 793–804, Oct. 2005.

111. W. Tan and G. Cheung, “SP-Frame Selection for Video Streaming over Burst-
loss Networks,” Proc. IEEE Int. Symposium on Multimedia, Irvine, USA, Dec.
2005.

112. J. Chakareski and B. Girod, “Rate-Distortion Optimized Video Streaming
Over Internet Packet Traces,” Proc. IEEE Int. Conference on Image Processing
(ICIP), Genoa, Italy, vol. 2, pp. 161–164, Sep. 2005.

113. T. Stockhammer, M. Walter, and G. Liebl, “Optimized H. 264-Based Bit-
stream Switching for Wireless Video Streaming,” Proc. IEEE Int. Conference
on Multimedia and Expo, Amsterdam, Netherlands, pp. 1396–1399, Jul. 2005.

114. D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris, “The Case for
Resilient Overlay Networks,” Proc. of the 8th Annual Workshop on Hot Topics
in Operating Systems, Elmau, Germany, May 2001.

115. J. G. Apostolopoulos, “Reliable Video Communication over Lossy Packet Net-
works using Multiple State Encoding and Path Diversity,” Proc. of SPIE Con-
ference on Visial Communicatins and Image Processing (VCIP), San Jose,
USA, pp. 392–409, Jan. 2001.

116. V. Goyal, “Multiple Description Coding: Compression Meets the Network,”
IEEE Signal Processing Magazine, vol. 18, no. 5, pp. 74–93, Sep. 2001.

117. Y. Wang, S. Panwar, S. Lin, and S. Mao, “Wireless Video Transport using
Path Diversity: Multiple Description vs. Layered Coding,” Proc. IEEE Int.
Conference on Image Processing (ICIP), Rochester, USA, pp. 21–24, Sep. 2002.

118. A. Majumdar, R. Puri, and K. Ramchandran, “Distributed Multimedia Trans-
mission from Multiple Servers,” Proc. IEEE Int. Conference on Image Pro-
cessing (ICIP), Rochester, USA, pp. 177–180, Sep. 2002.

119. S. Mao, S. Lin, S. Panwar, Y. Wang, and E. Celebi, “Video Transport over Ad
Hoc Networks: Multistream Coding with Multipath Transport,” IEEE Journal
on Selected Areas in Communications, vol. 21, no. 10, pp. 1721–1737, Dec. 2003.

120. A. Begen, Y. Altunbasak, O. Ergun, and M. Ammar, “Multipath Selection for
Multiple Description Video Streaming over Overlay Networks,” Signal Process-
ing: Image Communcation, vol. 20, no. 1, pp. 39–60, Jan. 2005.

121. J. Apostolopoulos, “Error Resilient Video Compression via Multiple State
Streams,” Proc. Int. Workshop on Very Low Bitrate Video Coding (VLBV’99),
Kyoto, Japan, pp. 168–171, Oct. 1999.

122. S. Ekmekci and T. Sikora, “Unbalanced Quantized Multi-State Video Coding:
Potentials,” IEEE Picture Coding Symposium, San Francisco, USA, Dec. 2004.

123. V. Goyal and J. Kovacevic, “Generalized Multiple Description Coding with
Correlated Transforms,” IEEE Transactions on Information Theory, vol. 47,
no. 6, pp. 2199–2224, Sep. 2001.

124. I. Bajic and J. Woods, “Domain-based Multiple Description Coding of Images
and Video,” Proc. of SPIE Conference on Visial Communicatins and Image
Processing (VCIP), San Jose, USA, pp. 124–135, Jan. 2002.

125. S. Lin and Y. Wang, “Analysis and Improvement of Multiple Description Mo-
tion Compensation Video Coding for Lossy Packet Networks,” Proc. IEEE
Int. Conference on Image Processing (ICIP), Rochester, USA, pp. 185–188,
Sep. 2002.

References 141

126. T. Petrisor, C. Tillier, B. Pesquet-Popescu, and J.-C. Pesquet, “Redundant
Multiresolution Analysis for Multiple Description Video Coding,” Proc. of the
IEEE Int. Workshop on Multimedia Signal Processing (MMSP), Siena, Italy,
Sep. 2004.

127. I. Radulovic and P. Frossard, “Multiple Description Image Coding with
Block-Coherent Redundant Dictionaries,” Proc. of Picture Coding Symposium,
Hangzhou, China, Apr. 2006.

128. J. Chakareski and B. Girod, “Server Diversity in Rate-Distortion Optimized
Media Streaming,” Proc. IEEE Int. Conference on Image Processing (ICIP),
Barcelona, Spain, Sep. 2003.

129. J. Chakareski, E. Setton, Y. Liang, and B. Girod, “Video Streaming with
Diversity,” Proc. IEEE Int. Conference on Multimedia and Expo, Baltimore,
USA, vol. 1, pp. 9–12, Jul. 2003.

130. J. Chakareski, S. Han, and B. Girod, “Layered Coding vs. Multiple Descriptions
for Video Streaming over Multiple Paths,” Multimedia Systems, Springer, on-
line journal publication: Digital Object Identifier (DOI) 10.1007/s00530-004-
0162-3, Jan. 2005.

131. T. Nguyen and A. Zakhor, “Distributed Video Streaming over the Internet,”
Proc. of SPIE Conference on Multimedia Computing and Networking, San
Jose, USA, Jan. 2002.

132. D. Jurca and P. Frossard, “Media-Specific Rate Allocation in Multipath Net-
works,” Signal Processing Institute Technical Report - TR-ITS-2005.032, Mar.
2006.

133. T. Nguyen and A. Zakhor, “Distributed Video Streaming with Forward Error
Correction,” Proc. of Packet Video Workshop, Pittsburg, USA, Apr. 2002.

134. ——, “Path Diversity with Forward Error Correction (PDF) System for Packet
Switched Networks,” Proc. INFOCOM, San Francisco, USA, vol. 3, pp. 663–
672, Apr. 2003.

135. X. Zhu, E. Setton, and B. Girod, “Congestion-Distortion Optimized Video
Transmission over Ad Hoc Networks,” Signal Processing: Image Communica-
tions, no. 20, pp. 773–783, Sep. 2005.

136. E. Setton, T. Yoo, X. Zhu, A. Goldsmith, and B. Girod, “Cross-Layer Design of
Ad Hoc Networks for Real-Time Video Streaming,” Wireless Communications
Magazine, vol. 12, no. 4, pp. 59–65, Aug. 2005.

137. S. Mao, S. Lin, S. Panwar, and Y. Wang, “A Multipath Video Streaming
Testbed for Ad Hoc Networks,” Proc. of the Fall IEEE Vehicular Technology
Conference, Orlando, Florida, Oct. 2003.

138. W. Wei and A. Zakhor, “Multipath Unicast and Multicast Video Communi-
cation over Wireless Ad Hoc Networks,” Proc. of IEEE/ACM BroadNets, pp.
496–505, Oct. 2004.

139. S. Deering, “Multicast Routing in a Datagram Internetwork,” Ph.D. thesis,
Stanford University, Dec. 1991.

140. X. Li, M. Ammar, and S. Paul, “Video Multicast over the Internet,” IEEE
Networks, vol. 13, no. 2, pp. 46–60, Mar. 1999.

141. J. Liu, B. Li, and Y.-Q. Zhang, “Adaptive Video Multicast over the Internet
,” IEEE Transactions on Multimedia, vol. 10, no. 1, pp. 22–33, Jan. 2003.

142. S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-Driven Layered Multi-
cast,” Proc. of ACM SIGCOMM, Stanford, USA, no. 117-130, Aug. 1996.

143. J. Apostolopoulos, W. Tan, and S. Wee, Video Streaming: Concepts, Algorithms
and Systems, in Handbook of Video Databases. CRC Press, 2003.

142 References

144. R. Kermode, “Scoped Hybrid Automatic Repeat Request with Forward Error
Correction,” Proc. of ACM SIGCOMM, Vancouver, Canada, no. 278-289, Sep.
1998.

145. L. Rizzo and L. Vicisano, “A Reliable Multicast Data Distribution Protocol
Based on Software FEC Techniques,” Proc. of HPCS, Chalkidiki, Greece, Jun.
1997.

146. P. Chou, A. Mohr, A. Wang, and S. Mehrotra, “FEC and Pseudo-ARQ for
Receiver-driven Layered Multicast of Audio and Video,” Proc. Data Compres-
sion Conference, Snowbird, USA, pp. 440–449, Mar. 1999.

147. W. Tan and A. Zakhor, “Video Multicast using Layered FEC and Scalable
Compression,” IEEE Transactions on Circuits and Systems on Video Technol-
ogy, vol. 11, no. 3, pp. 373–387, Mar. 2001.

148. “Akamai,” http://www.akamai.com, seen on Oct. 5 2006.
149. “Limelight,” http://www.limelight.com, seen on Oct. 5 2006.
150. “VitalStream,” http://www.vitalstream.com, seen on Oct. 5 2006.
151. L. Kontothanassisy, R. Sitaramanz, J. Weinz, D. Hongz, R. Kleinberg, B. Man-

cusoz, D. Shawz, and D. Stodolsky, “A Transport Layer for Live Streaming in
a Content Delivery Network,” Proc. of the IEEE, vol. 92, no. 9, pp. 1408–1419,
Sep. 2004.

152. L. Qiu, V. Padmanabhan, and G. Voelker, “On the Placement of Web Server
Replicas,” Proc. INFOCOM, New York, USA, pp. 1587–1596, Dec. 2001.

153. T. P.-C. Chen and T. Chen, “Second-Generation Error Concealment for Video
Transport over Error Prone Channels,” Proc. Int. Conference on Image Pro-
cessing (ICIP), Rochester, USA, Sep. 2002.

154. J. Apostolopoulos, T. Wong, W. Tan, and S. Wee, “On Multiple Description
Streaming Media Content Delivery Networks,” Proc. INFOCOM, New York,
USA, pp. 1736–1745, Jun. 2002.

155. M. Karlsson, C. Karamanolis, and M. Mahalingam, “A Framework for Evaluat-
ing Replica Placement Algorithms,” HPL Technical Report HPL-2002-219.
available at http://www.hpl.hp.com/personal/Magnus Karlsson/index.html.

156. S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and S. Khuller, “Con-
struction of an Efficient Overlay Multicast Infrastructure for Real-Time Ap-
plications,” Proc. INFOCOM, San Francisco, USA, Jun. 2003.

157. J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and J. O. Jr., “Overcast:
Reliable Multicasting with an Overlay Network,” USENIX Symposium on Op-
eration Systems Design and Implementation, San Diego, USA, Oct. 2000.

158. Y. Chawathe, “Scattercast: an Adaptable Broadcast Distribution Framework,”
Multimedia Systems, vol. 9, no. 1, pp. 104–118, Jul. 2003.

159. D. Anderson and J. Kubiatowicz, “The Worldwide Computer,” Scientific
American, vol. 286, no. 3, pp. 28–35, Mar. 2002.

160. “Top Sourceforge Downloads,” http://sourceforge.net/top/.
161. “BitTorrent Protocol Specification,” http://www.bittorrent.org/protocol.html,

seen on Apr. 20 2007.
162. D. Eastlake and P. Jones, “US Secure Hash Algorithm 1 (SHA-1),” RFC 3174,

Sep. 2001.
163. S. Saroiu, P. Gummadi, and S. Gribble, “A Measurement Study of Peer-

to-Peer File Sharing Systems,” Proc. Multimedia Computing and Networking
(MMCN’02), San Jose, CA, USA, Jan. 2002.

References 143

164. F. Bustamante and Y. Qiao, “Friendships that Last: Peer Lifespan and its
Role in P2P Protocols,” Proc. Intl. Workshop on Web Content Caching and
Distribution, Hawthorne, NY, USA, Oct. 2003.

165. J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The Bittorrent P2P File-
sharing System: Measurements and Analysis,” 4th International Workshop on
Peer-to-Peer Systems (IPTPS), Ithaca, NY, USA, Feb. 2005.

166. G. Neglia, G. Reina, H. Zhang, D. Towsley, A. Venkataramani, and J. Danaher,
“Availability in BitTorrent Systems,” Proceedings of IEEE Infocom, Anchor-
age, AK, USA, May 2007.

167. K. Sripanidkulchai, “The Popularity of Gnutella Queries and Its Implications
on Scalability,” Technical report, Carnegie Mellon University, Feb. 2001.

168. Y. Tian, D. Wu, and K.-W. Ng, “Modeling, Analysis and Improvement for
Bittorrent-Like File Sharing Networks,,” Proc. IEEE INFOCOM, Barcelona,
Spain, Apr. 2006.

169. J. Wang, C. Yeo, V. Prabhakaran, and K. Ramchandran, “On the Role of
Helpers in Peer-to-Peer File Download Systems: Design, Analysis and Simu-
lation,” Proc. of the Sixth International Workshop on Peer-to-Peer Systems,
Feb. 2007.

170. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A Scalable
Content-Addressable Network,” Proc. of ACM SIGCOMM, San Diego, USA,
pp. 161–172, Aug. 2001.

171. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, “Chord:
A Scalable Peer-To-Peer Lookup Service for Internet Applications,” Proc. of
ACM SIGCOMM, San Diego, USA, pp. 149–160, Aug. 2001.

172. J. Liebeherr, M. Nahas, and W. Si, “Application-layer Multicasting with De-
launay Triangulations Overlays,” IEEE Journal on Selected Areas in Commu-
nications, vol. 20, no. 8, pp. 1472–1488, Oct. 2002.

173. M. Castro, P. Druschel, Y. Hu, and A. Rowstron, “Proximity Neighbor Selec-
tion in Tree-Based Structured Peer-to-Peer Overlays,” Technical report MSR-
TR-2003-52.

174. K. Hildrum, J. Kubiatowicz, S. Rao, and B. Zhao, “Distributed Object Lo-
cation in a Dynamic Network ,” Theory of Computing Systems, no. 37, pp.
405–440, Mar. 2004.

175. P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer information sys-
tem based on the xor metric,” In Proceedings of IPTPS02, Cambridge, MA,
USA, Mar. 2002.

176. M. Castro, M. Costa, and A. Rowstron, “Debunking Some Myths About Struc-
tured and Unstructured Overlays,” Proceedings of the 2nd Symposium on Net-
worked Systems Design and Implementation, Boston, MA, USA, May 2005.

177. S. Sheu, K. Hua, and W. Tavanapong, “Chaining: a Generalized Batching Tech-
nique for Video-on-Demand Systems,” Proc. IEEE Int. Conference Multimedia
Computing and Systems, Ottawa, Canada, pp. 110–117, Jun. 1997.

178. Y. Cui, B. Li, and K. Nahrstedt, “Layered Peer-to-Peer Streaming,” Proc.
NOSSDAV’03, Monterey, USA, pp. 162–171, Jun. 2003.

179. ——, “oStream: Asynchronous Streaming Multicast in Application-Layer
Overlay Networks,” IEEE Journal on Selected Areas in Communications,
vol. 22, no. 1, Jan. 2004.

180. Z. Xiang, Q. Zhang, W. Zhu, Z. Zhang, and Y.-Q. Zhang, “Peer-to-Peer Based
Multimedia Distribution Service,” IEEE Transactions on Multimedia, vol. 6,
no. 2, pp. 343–355, Apr. 2004.

144 References

181. X. Xu, Y. Wang, S. Panwar, and K. Ross, “A Peer-to-Peer Video-on-Demand
System using Multiple Description Coding and Server Diversity,” Proc. IEEE
Int. Conference on Image Processing (ICIP), Singapore, vol. 3, pp. 1759–1762,
Oct. 2004.

182. Y. Chu, S. Rao, S. Seshan, and H. Zhang, “A Case for End System Multicast,”
IEEE Journal on Selected Areas in Communications, vol. 20, no. 8, pp. 1456–
1471, Oct. 2002.

183. S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable Application
Layer Multicast,” Proc. ACM SIGCOMM, Pittsburgh, USA, pp. 205–217, Aug.
2002.

184. D. Tran, K. Hua, and T. Do, “ZIGZAG: An Efficient Peer-to-Peer Scheme for
Media Streaming,” Proc. IEEE INFOCOM, San Francisco, USA, vol. 2, pp.
1283–1292, Mar. 2003.

185. Y. Chu, A. Ganjam, T. Ng, S. Rao, K. Sripanidkulchai, J. Zhan, and H. Zhang,
“Early Experience with an Internet Broadcast System Based on Overlay Mul-
ticast,” Proc. USENIX Annual Technical Conference, Boston, MA, USA, pp.
1283–1292, Jun. 2004.

186. Y. Zhu, B. Li, and J. Guo, “Multicast with Network Coding in Application-
Layer Overlay Networks,” IEEE Journal on Selected Areas in Communications,
vol. 1, no. 22, pp. 107–120, Jan. 2004.

187. X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “DONet/CoolStreaming: A Data-
driven Overlay Network for Live Media Streaming,” Proc. IEEE Infocom, Mi-
ami, USA, Feb. 2005.

188. M. Zhang, J.-G. Luo, L. Zhao, and S.-Q. Yang, “A Peer-to-Peer Network for
Live Media Streaming using a Push-Pull Approach,” Proc. ACM Int. Confer-
ence on Multimedia, pp. 287–290, Nov. 2005.

189. ——, “Large-Scale Live Media Streaming over Peer-to-Peer Networks through
Global Internet,” Proc. ACM Int. Conference on Multimedia, P2PMMS Work-
shop, pp. 21–28, Nov. 2005.

190. B. Ford, P. Sisuresh, and D. Kegel, “Peer-to-Peer Communication across Net-
work Address Translators,” Proc. USENIX Annual Technical Conference, Ana-
heim, CA, USA, pp. 179–192, Apr. 2005.

191. A. Biggadike, D. Ferullo, G. Wilson, and A. Perrig, “NATBLASTER: Es-
tablishing TCP Connections Between Hosts behind NATs,” Proc. ACM SIG-
COMM, Asia Workshop, Beijing, China, Apr. 2005.

192. J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy, “STUN - Simple
Traversal of User Datagram Protocol (UDP) through Network Address Trans-
lators (NATs), RFC 3489,” Mar. 2003.

193. J. Rosenberg, C. Huitema, and R. Mahy, “Traversal using Relay NAT (TURN),
Internet Draft,” Oct. 2003.

194. J. Rosenberg, “Interactive Connectivity Establishment (ICE): a Methodology
for Network Address Translator (NAT) Traversal for Multimedia Session Es-
tablishment Protocols, Internet Draft,” Feb. 2004.

195. M. Bansal and A. Zakhor, “Path Diversity for Overlay Multicast Streaming,”
Proc. Packet Video Worshop, Irvine, CA, USA, Dec. 2004.

196. V. Padmanabhan, H. Wang, and P. Chou, “Resilient Peer-to-Peer Streaming,”
IEEE Int. Conference on Network Protocols, Atlanta, USA, Nov. 2003.

197. V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai, “Distribut-
ing Streaming Media Content Using Cooperative Networking,” Proc. NOSS-
DAV’02, Miami, USA, May 2002.

References 145

198. E. Setton, X. Zhu, and B. Girod, “Minimizing Distortion for Multipath Video
Streaming over Ad Hoc Networks,” Proc. Int. Conference on Image Processing
(ICIP), Singapore, vol. 3, pp. 1751–1754, Oct. 2004.

199. E. Setton, J. Noh, and B. Girod, “Rate-Distortion Optimized Video Peer-
to-Peer Multicast Streaming,” Proc. of the ACM workshop on Advances in
peer-to-peer multimedia streaming P2PMMS’05 , Singapore, pp. 39–45, Nov.
2005.

200. “The Network Simulator - ns-2,” www.isi.edu/nsnam/ns/.
201. E. Setton and B. Girod, “Congestion-Distortion Optimized Scheduling of

Video,” Multimedia Signal Processing Workshop (MMSP), Siena, Italy, pp.
99–102, Oct. 2004.

202. E. Setton, X. Zhu, and B. Girod, “Congestion-Optimized Scheduling of Video
over Wireless Ad Hoc Networks,” Proc. Int. Symposium on Circuits and Sys-
tems (ISCAS), Kobe, Japan, vol. 4, pp. 3531–3534, May 2005.

203. A. Mukherjee, “On the Dynamics and Significance of Low Frequency Compo-
nents of Internet Load,” Internetworking: Research and Experience, vol. 5, pp.
163–205, Dec. 1994.

204. M. Kalman and B. Girod, “Modeling the Delays of Successively-Transmitted
Internet Packets,” Proc. Int. Conference on Multimedia and Expo (ICME),
Taipei, Taiwan, Jul. 2004.

205. A. Leon-Garcia, Probability and Random Processes for Electrical Engineering.
MA: Addison-Wesley, 1994.

206. J. Strauss, D. Katabi, and F. Kaashoek, “A Measurement Study of Available
Bandwidth Estimation Tools,” Proc. of the 3rd ACM SIGCOMM Conference
on Internet Measurement, Miami Beach, CA, USA, pp. 39–44, Oct. 2003.

207. R. Zhang-Shen and N. McKeown, “Designing a Predictable Internet Backbone
with Valiant Load-Balancing,” Thirteenth International Workshop on Quality
of Service (IWQoS 2005), Passau, Germany, pp. 174–188, Jun. 2005.

208. “PlanetLab,” http://www.planet-lab.org, seen on Apr. 12 2007.
209. P. Baccichet, J. Noh, E. Setton, and B. Girod, “Content-Aware P2P Video

Streaming With Low Latency,” Proc. IEEE Int. Conference on Multimedia
and Expo (ICME), Beijing, China, to appear, Jul. 2007.

210. K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, “The Feasibility of
Supporting LargeScale Live Streaming Applications with Dynamic Application
EndPoints,” Proc. SIGCOMM’04, Portland, USA, Aug. 2004.

211. E. Setton, J. Noh, and B. Girod, “Low Latency Video Sreaming over Peer-to-
Peer Networks,” Proc. IEEE Int. Conference on Multimedia and Expo (ICME),
Toronto, Canada, pp. 569–572, Jul. 2006.

212. J. Chakareski and B. Girod, “Computing Rate-Distortion Optimized Policies
for Streaming Media with Rich Acknowledgements,” Proc. IEEE Data Com-
pression Conference, Snowbird, USA, pp. 202–211, Apr. 2004.

213. E. Setton, P. Baccichet, and B. Girod, “Peer-to-Peer Live Multicast: A Video
Perspective,” Proc. of the IEEE, submitted.

214. K. Stuhlmüller, Modeling and Optimization of Video Transmission Systems,
Ph.D. Dissertation, University of Erlangen, 2000.

Index

ACK, 10, 47–50, 90
ADSL, 78
Akamai, 13
application layer, 11, 17, 18, 86
ARQ, see automatic repeat request
ATM, 17
automatic repeat request, 10, 19, 48,

51, 52, 56–59, 61

best-effort, 8
bottleneck link, 19, 24, 28, 29, 34–36,

40, 51, 52, 56, 61, 92, 115
bottleneck queue, 31–38, 40, 42, 45, 46,

51, 56, 61, 89, 120
broadband, 8
broadcast, 14

CAN, 16
CAVLC, 118
Chord, 16
CIF, 21, 26, 27, 121, 123, 125, 127, 129,

131
client-server, see server-client
coding

channel coding, 9
coding dependency, 118
coding structure, 19, 21, 24, 28, 30,

34, 37, 41, 44, 47, 91, 92, 94, 96,
97, 102, 106–108, 117, 118, 122,
124, 126, 128, 130, 132

entropy coding, 5, 6, 118
intra-coding, 5, 6, 9, 20, 21
layered coding, 9–11, 13, 18, 34, 116,

117

motion-compensated, 5–7, 21
multiple description coding, 12, 18,

114
single-layer, 11, 12, 18
VBR, 28

coding structure, 20, 21, 38, 50, 51, 91,
94, 95, 117

congestion control, 8, 11, 33
content delivery network, 1, 13, 78
content-adaptive, 12, 114
content-aware, see content-adaptive
content-oblivious, 19, 90, 101, 106–108
control overhead, 64, 74, 79–81, 86, 103,

104, 116
convergence, 10, 41
convex, 24, 41
convolution, 34
CPU, 90

data-driven, 16
deadline

decoding deadline, 29, 38, 40, 106
playout deadline, 29–33, 38, 42, 47,

48, 50–54, 56–59, 61, 88, 92, 96,
97, 102, 106, 107

degree, 78, 85
delay

end-to-end delay, 10, 19, 20, 24,
33–36, 48, 50, 51, 54, 55, 60, 89,
96, 111, 116

propagation delay, 34, 36, 40, 47, 50,
51, 78

startup delay, 1, 8, 17, 116
deployment, 14, 63, 116

148 Index

derivative, 25
descendant, 73, 76, 88, 90–92, 114
distortion

distortion-optimized, 18, 87, 91, 93,
95, 97, 101, 107, 108, 111, 115

encoder distortion, 8, 61
expected distortion, 9, 35, 38, 46, 48,

49, 94
MSE, 20, 42, 45, 95, 119, 120

distributed hash table, 16
distribution

bandwidth distribution, 78
cumulative distribution function, 79,

80
delay distribution, 34, 38, 47, 49, 97
exponential, 23–28, 34–36, 42, 47, 96
gamma, 34
Gaussian, 7
Poisson, 24, 78, 79
uniform, 21, 42, 44

error-concealment, 10, 11, 21, 28, 38,
39, 47, 48, 94–96, 118

estimation, 11, 13, 19–21, 23, 33, 34, 36,
37, 49, 70, 71, 73, 75, 78, 89, 90,
93–95

FEC, see forward error correction
feedback, 9, 10, 12, 13, 21, 28, 38, 56
file transfer, 1, 16
firewall, 17, 78
flash crowd, 78
flooding, 16
FMO, 9
forward error correction, 9, 10, 12, 13,

18, 114
frame freeze, 37, 38, 48, 94, 103, 105,

106, 108–110
frame type

B frame, 6, 7, 20, 21, 25, 28, 41, 44,
46, 51, 91, 106, 117, 118

I frame, 6, 7, 20, 21, 24, 29, 44, 48,
50, 51, 91, 97, 117, 118, 122, 124,
126, 128, 130, 132

P frame, 6–8, 20, 21, 44, 91, 117, 118
SI frame, 20
SP frame, 11, 20

free-rider, 78, 103

GOP, see coding structure

HDTV, 8
hybrid video coding, 5–7

impact metric, 92, 97, 107
importance metric, 91, 92, 95
inter-arrival time, 28
intra-prediction, see intra-coding

knapsack problem, 10

Lagrangian cost, 10, 19, 41, 46, 48–50
latency constraint, 14, 111, 117
leaf, 88
Limelight, 13
live, 2, 9, 11, 14, 17, 63
low complexity, 2, 10, 19, 33, 46, 61, 87,

90

macroblock, 9, 11, 20, 21
maximum transmission unit, 28, 37, 47,

88–90, 97
Mbone, 13
meta-data, 15
Microsoft, 5
minimum-depth, 66
mobility, 8, 12
model

delay distribution model, 19, 33–35,
52, 96

fit, 21, 24, 26–29
peer connection time model, 16
peer connection time model, 78
queuing model, 23–25, 30, 34
rate-distortion model, 2, 7, 19, 25, 28,

30, 33, 61, 115
tree-building model, 84, 85

motion vector, 6, 9
multi-hop path, 1, 8, 24, 28, 34, 91
multi-path, see path diversity
multiple paths, see path diversity

NACK, 10, 89
NAT, 17, 78, 80
network simulator, 28, 47, 48, 77, 80, 96
NP-hard, 10

order
display order, 41, 92, 117, 119
encoding order, 24, 28, 88
out-of-order arrivals, 49, 88, 89, 96

Index 149

transmission order, 42, 44, 45, 51, 56,
77, 92, 95

P2P clients
Napster, 16

P2P clients
ABC, 15
Azureus, 15
BitComet, 15
BitTorrent, 14–16
eDonkey, 14
eMule, 14
Gridmedia, 17
Joost, 17
Kazaa, 16, 17
Napster, 1
PPLive, 17
PPStream, 17
TurboBT, 15
TVU networks, 17
utorrent, 15
Zattoo, 17

Pastry, 16
path diversity, 8, 12, 24, 66, 71, 75, 84,

88, 89, 114
peak-signal-to-noise ratio, see PSNR
Pentium, 90
PET, 9
piracy, 16
PlanetLab, 63
pre-encoded, see pre-stored
pre-stored, 9, 11
probe packet, 48, 51
protocol packet type

ATTACH REPLY, 76, 77
ATTACH REQUEST, 76
HELLO, 70, 73–77, 79, 92, 116
HELLO REPLY, 77
JOIN REPORT, 76
LEAVE NOTICE, 76
LIST REQUEST, 76
LIST REQUEST REPLY, 76
PROBE, 68, 69, 74, 76, 79, 80, 103,

116
PROBE REPLY, 67, 76

protocol state
ATTACH, 66, 69–71, 75
JOIN, 64–66, 69, 72, 75
OFFLINE, 64, 65, 69

ONLINE, 64, 67–70, 72–74
PROBE, 64–66, 68–70, 75, 80
REJOIN, 67–69, 72

protocol timer, 70, 76, 80
PSNR, 119, 120

QoS, 8, 9
quantization, 6, 11, 12, 20, 25, 28
query, 16, 70, 79, 80

RaDiO, 10, 12, 19, 33, 45, 49, 61, 90
random process, 24, 28, 36, 78, 79
randomized search, 33, 41, 49, 61, 95
rate control, 11, 28, 30, 33
re-encoding, 11
re-synchronization, 6
real time, 63
real-time, 1, 14, 19, 61
receiver-driven, 10
reciprocation, 15
reconnection, 72, 73, 79, 80, 82, 86, 88,

106
reference frame, 5, 6, 9, 117, 118
rendez-vous server, 17
Riemann, 36, 37
round-robin, 77
round-trip time, 66, 70, 71, 73, 75–77,

80
router, 12, 13
RPS, 9
RTT, see round-trip time

SDTV, 8
seed, 15
self-congestion, 2, 19, 61, 115
server-client, 1, 2, 13, 61, 87, 89, 116
server-driven, 10
SHA-1, 15
Shannon, 9
signature, 15
single-hop, 23
SPPM, 63, 116
stability, 66, 79, 82, 86, 102, 103, 110,

116
Stanford, 63, 116
stationary, 7
storage, 14
STUN, 80
synchronous, 2, 13, 115

150 Index

syntax, 6, 9, 15

TCP, 11, 15

television, 1, 8, 17
TFRC, 11
time-varying, 10, 11, 33–35, 38, 49, 120
timer, see protocol timer
tit-for-tat, 15, 16

tracker, 15, 16
traffic

control traffic, 79, 90, 102, 103
cross traffic, 25, 28, 29, 31–33, 36, 42,

46, 47, 96, 102
traffic bursts, 10, 33, 36, 47, 51, 88,

96, 115
transcoding, 11
transform, 5, 6, 12, 118

transmission schedule, 33, 35, 38, 41, 56
transport layer, 11, 28, 37, 47
TV, see television

UDP, 28, 76, 78

unchoke, 16
unequal error protection, 9, 13
unicast, 2, 13, 90, 95, 96

video codec
AVS, 5
FRExt, 6
H.261, 5, 7
H.262, 5
H.263, 5, 7
H.264/AVC, 5–9, 11, 20, 21, 28, 102,

117, 118
MPEG-1, 5, 7
MPEG-2, 5, 7
MPEG-4, 5, 7
SVC, 6, 116
VC-1, 5

video test sequence
Container, 121
Foreman, 123
Mobile, 125
Mother & Daughter, 127
News, 129
Salesman, 131

video-on-demand, 17
VitalStream, 13

wavelet, 116
webserver, 14, 15
wireless, 8, 11, 12, 34, 78

	Preface
	Contents
	Introduction
	Background
	Video Compression
	H.264 Video Coding
	Distortion Models

	Video Streaming
	Error Resilience
	Congestion Control
	Path Diversity

	Multicast Architectures
	IP Multicast
	Content Delivery Networks

	Peer-to-Peer Systems
	Peer-to-Peer File Transfer, the Example of BitTorrent
	Peer-to-Peer Streaming

	Streaming over Throughput-Limited Paths
	Video Encoding for Throughput-Limited Paths
	End-to-End Rate-Distortion Performance Model
	Experimental Results

	Congestion-Distortion Optimized Scheduling
	Channel Model
	Evaluating a Schedule
	Randomized Schedule Search
	CoDiO Light
	Experimental Results

	Chapter Summary

	Peer-to-Peer Control Protocol
	Protocol Description
	Different Peer States
	Different Tree Connection States
	Multicast Source
	Protocol Settings

	Experimental Protocol Evaluation
	Experimental Setup
	Control Protocol Traffic Distribution
	Join and Rejoin Latency
	Scalability
	Limiting Throughput

	Chapter Summary

	Video Streaming over a Peer-to-Peer Network
	Video Streaming Protocol
	Video Packet Transmission
	Retransmissions

	Peer-to-Peer CoDiO Scheduling
	Sender-Driven Prioritization
	Distortion-Optimized Retransmission Scheduling
	Scheduler Evaluation

	Experimental Results
	Video Sessions
	Diversity
	CoDiO P2P

	Chapter Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Video Experiments
	Video Streaming
	Encoding Structures
	Latency-Constrained Video Streaming
	Error-Resilient Decoding
	Quality Metric

	Video Sequences
	Container
	Foreman
	Mobile
	Mother & Daughter
	News
	Salesman

	References
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

